some image logo

HOME

SEARCH

CURRENT ISSUE

REGULAR ISSUES

   Volume 1 (2005)

   Volume 2 (2006)

   Volume 3 (2007)

   Volume 4 (2008)

   Volume 5 (2009)

   Volume 6 (2010)

   Volume 7 (2011)

   Volume 8 (2012)

   Volume 9 (2013)

   Volume 10 (2014)

   Volume 11 (2015)

      Issue 1

      Issue 2

      Issue 3

      Issue 4

   Volume 12 (2016)

   Volume 13 (2017)

SPECIAL ISSUES

SURVEY ARTICLES

AUTHORS

ABOUT

SERVICE

LOGIN

FAQ

SUPPORT

CONTACT

VOLUME 11, ISSUE 3, PAPER 24


New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic

©Bart Jacobs, Institute for Computing and Information Sciences (iCIS), Radboud University Nijm

Abstract
Intuitionistic logic, in which the double negation law not-not-P = P fails, is dominant in categorical logic, notably in topos theory. This paper follows a different direction in which double negation does hold. The algebraic notions of effect algebra/module that emerged in theoretical physics form the cornerstone. It is shown that under mild conditions on a category, its maps of the form X -> 1+1 carry such effect module structure, and can be used as predicates. Predicates are identified in many different situations, and capture for instance ordinary subsets, fuzzy predicates in a probabilistic setting, idempotents in a ring, and effects (positive elements below the unit) in a C*-algebra or Hilbert space. In quantum foundations the duality between states and effects plays an important role. It appears here in the form of an adjunction, where we use maps 1 -> X as states. For such a state s and a predicate p, the validity probability s |= p is defined, as an abstract Born rule. It captures many forms of (Boolean or probabilistic) validity known from the literature. Measurement from quantum mechanics is formalised categorically in terms of `instruments', using Lüders rule in the quantum case. These instruments are special maps associated with predicates (more generally, with tests), which perform the act of measurement and may have a side-effect that disturbs the system under observation. This abstract description of side-effects is one of the main achievements of the current approach. It is shown that in the special case of C*-algebras, side-effect appear exclusively in the non-commutative case. Also, these instruments are used for test operators in a dynamic logic that can be used for reasoning about quantum programs/protocols. The paper describes four successive assumptions, towards a categorical axiomatisation of quantitative logic for probabilistic and quantum systems.

Publication date: October 1, 2015

Full Text: PDF | PostScript
DOI: 10.2168/LMCS-11(3:24)2015

Hit Counts: 2576

Creative Commons