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ABSTRACT. We study the finitary version of the coalgebraic logic introduced by L. Moss.
The syntax of this logic, which is introduced uniformly with respect to a coalgebraic type
functor, required to preserve weak pullbacks, extends that of classical propositional logic
with a so-called coalgebraic cover modality depending on the type functor. Its semantics
is defined in terms of a categorically defined relation lifting operation.

As the main contributions of our paper we introduce a derivation system, and prove
that it provides a sound and complete axiomatization for the collection of coalgebraically
valid inequalities. Our soundness and completeness proof is algebraic, and we employ
Pattinson’s stratification method, showing that our derivation system can be stratified in
countably many layers, corresponding to the modal depth of the formulas involved.

In the proof of our main result we identify some new concepts and obtain some auxiliary
results of independent interest. We survey properties of the notion of relation lifting,
induced by an arbitrary but fixed set functor. We introduce a category of Boolean algebra
presentations, and establish an adjunction between it and the category of Boolean algebras.

Given the fact that our derivation system involves only formulas of depth one, it can
be encoded as a endo-functor on Boolean algebras. We show that this functor is finitary
and preserves embeddings, and we prove that the Lindenbaum-Tarski algebra of our logic
can be identified with the initial algebra for this functor.
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1. INTRODUCTION

Coalgebra, introduced to computer science by Aczel in the late 1980s [Il, 2], is rapidly
gaining ground as a general mathematical framework for many kinds of state-based evolv-
ing systems. Examples of coalgebras include data streams, (infinite) labelled trees, Kripke
structures, finite automata, (probabilistic/weighted) transition systems, neighborhood mod-
els, and many other familiar structures. As emphasized by Rutten [46], who developed, in
analogy with Universal Algebra, the theory of Universal Coalgebra as a general theory of
such transition systems, the coalgebraic viewpoint combines wide applicability with mathe-
matical simplicity. In particular, one of the main advantages of the coalgebraic approach is
that a substantial part of the theory of systems can be developed uniformly in a functor T’
which represents the type of the coalgebras we are dealing with. Here we restrict attention
to systems, where T' is an endofunctor on the category Set of sets with functions, so that a
T-coalgebra is a pair of the form

X =(X,6: X > TX)

with the set X being the carrier or state space of the coalgebra, and the map & its un-
folding or transition map. Many important notions, properties, and results of systems can
be explained just in terms of properties of their type functors. As a key example, any
set functor 7' canonically induces a notion of observational or behavioural equivalence be-
tween T'-coalgebras; this notion generalizes the natural notions of bisimilarity that were
independently developed for each specific type of system.

In order to describe and reason about the kind of behaviour modelled by coalgebras,
there is a clear need for the design of coalgebraic specification languages and derivation
systems, respectively. The resulting research programme of Coalgebraic Logic naturally
supplements that of Coalgebra by searching for logical formalisms that, next to meeting
the usual desiderata such as striking a good balance between expressive power and com-
putational feasibility, can be defined and studied uniformly in the functor T. Given the
fact that Kripke models and frames are prime examples of coalgebras, it should come as no
surprise that in search for suitable coalgebraic logics, researchers looked for inspiration to
modal logic [16].

This research direction was inititiated by Moss [41]; roughly speaking, his idea was to
take the functor T itself as supplying a modality Vr, in the sense that for every element
a € TL (where L is the collection of formulas), the object Vra is a formula in £. While
Moss’ work was recognized to be of seminal conceptual importance in advocating modal
logic as a specification language for coalgebra, his particular formalism did not find much
acclaim, for at least two reasons. First of all, the semantics of his modality is defined in terms
of relation lifting, and for this to work smoothly, Moss needed to impose a restriction on
the functor (the coalgebra type functor T' is required to preserve weak pullbacks). Thus the
scope of his work excluded some interesting and important coalgebras such as neighborhood
models and frames. And second, for practical purposes, the syntax of Moss’ language was
considered to be rather unwieldy, with the nonstandard operator V looking strikingly
different from the usual O and & modalities.

Following on from Moss’ work, attention turned to the question how to obtain modal
languages for T-coalgebras which use more standard modalities [36], [45] 28], and how to find
derivation systems for these formalisms. This approach is now usually described in terms of
predicate liftings [43] [49] or, equivalently, Stone duality [I7, [37]. Other approaches towards
coalgebraic logic, such as the one using co-equations [3] until now have received somewhat
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less attention. For a while, this development directed interest away from Moss’ logic, and
the relationship between various approaches towards coalgebraic logic was not completely
clear.

In the mean time, however, it had become obvious that even in standard modal logic,
a nabla-based approach has some advantages. In this setting the coalgebra type T is in-
stantiated by the power set functor P, so that (the finitary version of) the nabla operator
Vp, takes a (finite) set a of formulas and returns a single formula Vpa. The semantics of
this so-called cover modality can be explicitly formulated as follows, for an arbitrary Kripke
structure X with accessibility relation R:

X,z lF Vpa if  for all a € a there is a t € R[z]| with X, ¢ I a, and

for all t € R[x] there is an a € o with X, IF a. (1.1)

In short: Vpa holds at a state  iff the formulas in « and the set R[z]| of successors of
x ‘cover’ one another. Readers familiar with classical first-order logic will recognize the
quantification pattern underlying (I.I)) from the theory of Ehrenfeucht-Fraissé games, Scott
sentences, and the like, see for instance [26]. In modal logic, related ideas made an early
appearance in Fine’s work on normal forms [21].

Using the standard modal language, Vp can be seen as a defined operator:

Vpa = 0OVa A ACa, (1.2)

where Ca denotes the set {<Ca | a € a}. But is in fact an easy exercise to prove that with
Vp defined by (I.I]), we have the following semantic equivalences:

e Vp{a, T}
Oa Vpo VvV Vp{a}

In other words, the standard modalities O and <& can be defined in terms of the nabla
operator (together with VV and T). When combined, (I.2]) and (I.3]) show that the language
based on the nabla operator offers an alternative formulation of standard modal logic.

In fact, independently of Moss’ work, Janin & Walukiewicz [30] had already made the
much stronger observation that the set of connectives {0, <, A, V} may in some sense be
replaced by the connectives Vp and V, that is, without the conjunction operation. This fact,
which is closely linked to fundamental automata-theoretic constructions, lies at the heart
of the theory of the modal p-calculus, and has many applications, see for instance [20, [47].
These observations naturally led Venema [55] to introduce, parametric in the coalgebraic
type functor T, a finitary version of Moss’ logic, extended with fixpoint operators, and to
generalize the link between fixpoint logics and automata theory to the coalgebraic level of
generality. Subsequently, Kupke & Venema [35] showed that many fundamental results in
automata theory and fixpoint logics are really theorems of universal coalgebra. The key
role of the nabla modality in these results revived interest in Moss’ logic.

Our paper addresses the main problem left open in the literature on V-based coalgebraic
logic, namely that of providing a sound and complete derivation system for the logic. Moss’
approach is entirely semantic, and does not provide any kind of syntactic calculus. As a first
result in the direction of a derivation system for nabla modalities, Palmigiano & Venema [42]
gave a complete axiomatization for the cover modality Vp. This calculus was streamlined
into a formulation that admits a straightforward generalization to an arbitrary set functor
T, by Bilkové, Palmigiano & Venema [13], who also provided suitable Gentzen systems for
the logic based on Vp. In this paper we will prove the soundness and completeness of this
axiomatization in the general case.

(1.3)
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In the remaining part of the introduction we briefly survey the paper, its main contri-
butions, and its proof method. Throughout the paper we let T' denote the coalgebraic type
functor; usually we make the proviso that 7" preserves weak pullbacks and inclusions (all of
this will be discussed further on in detail). Our key instrument in making Moss’ language
more standard is to base its syntax on the finitary version T, of the functor T° which is
defined on objects as follows: for a set X, T, X := |J{TY | Y C, X}. As we will discuss
in detail, for each object o € T, X there is a minimal finite set Basex(a) C,, X such that
a € T Base(a), and the maps Basex provide a natural transformation

Base : T,, = P,,.
The formulas of our coalgebraic language £ can now be defined by the following grammar:

a = -a|A¢| Ve | Vra.
where ¢ € P,L and a € T,,L. That is, the propositional basis of our coalgebraic language
L takes the finitary conjunction (/\) and disjunction (\/) connectives as primitives, and to
this we add the coalgebraic modality V7, which returns a formula Vpa for every object
a € T,L. The point of restricting Moss’ modality to the set T,,L is that the formula Vra
has a finite, clearly defined set of immediate subformulas, namely the set Base(a); thus
every formula has a finite set of subformulas.

The key observation of Moss [41] was that the semantics (L)) of V can be expressed in
terms of the so-called Egli-Milner lifting of the satisfaction relation IF C X x L. Generalizing
this observation from the Kripke functor P to the arbitrary type 7', he uniformly defined
the semantics of Vr in a T-coalgebra X = (X, ) as follows:

X,z Ik Vrya iff £(z) TIF .

Here Tl denotes a categorically defined lifting of the satisfaction relation IF C X x L
between states and formulas to a relation T+ C TX x TL. Given the importance of the
relation lifting operation T in Moss’ logic, we include in this paper a fairly detailed survey
of its properties and related concepts.

The coalgebraic walidities, that is, the formulas that are true at every state of every
T-coalgebra thus constitute a semantically defined coalgebraic logic, and it is this logic that
we will axiomatize in this paper. Our approach will be algebraic in nature, and so it will be
convenient to work with equations, or rather, inequalities (expressions of the form a < b,
where a an b are terms/formulas of the language).

We obtain our derivation system for Moss’ logic by extending a sound and complete
derivation system for propositional logic with three rules for the V-operator. The first
rule, denoted by (V1), can be seen as a combined montonicity and congruence rule. Rule
(V2) is a distributive law that expresses that any conjunction of V-formulas is equivalent
to a (possibly infinite) disjunction of V-formulas built from conjunctions. Finally, rule
(V3) expresses that V distributes over disjunctions. In the case that the functor 7' under
consideration maps finite sets to finite sets, the rules (V2) and (V3) take the form of axioms.

The proof of our soundness and completeness theorem is based on the stratification
method of Pattinson [43]. We will show that not only the language of our system, but also
its semantics and our derivation system can be stratified in w many layers corresponding
to the modal depth of the formulas involved. (This means for instance that if two formulas
of depth n are provably equivalent, this can be demonstrated by a derivation involving only
formulas of depth at most n.) What glues these layers nicely together can be formulated in
terms of properties of a one-step version of the derivation system M.
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In our algebraic approach, this one-step version of M is incarnated as a functor on the
category of Boolean algebras:
M : BA — BA.

To mention a few interesting properties of this functor, of which the definition is uniformly
parametrized by the functor T': M is finitary, and preserves atomicity of Boolean algebras,
and injectivity of homomorphisms. We will be interested in algebras for the functor M, and
in particular, we will see that the initial M-algebra can be seen as the Lindenbaum-Tarski
algebra of our derivation system M.

For the definition of Ml, we need to go into quite a bit of detail concerning the theory of
presentations of (Boolean) algebras. In particular, we define a category Pres of presentations
by introducing a suitable notion of presentation morphism, and establish an adjunction
between the categories Pres and BA:

B
BA~ 1L Pres (1.4)

—

C

This adjunction (which is almost an equivalence) is the instrument that allows us to turn
the modal rule and axioms of M into the functor M; the key property that makes this work
is that all modal rules and axioms of M are formulated in terms of depth-one formulas.

What is left to do, in order to prove the soundness and completeness of our logic, is
connect the algebra functor M : BA — BA (that is, the ‘logic’) to the coalgebra functor
T : Set — Set (the ‘semantics’). Here we will apply a well-known method in coalgebraic
logic [17), [37] which is often described in terms of Stone duality because its aim is to link
functors on two different base categories that are connected themselves by a Stone-type
duality or adjunction.

In our case, to make the connection between M and 1" we invoke the already existing
link on the level of the base logic, provided by the (contravariant) power set functor P
from Set to BA (we do not need its adjoint functor sending a Boolean algebra to its set of
ultrafilters):

P

MCBA/(_\ SetDT (1.5)
The key remaining step in the completeness proof involves the definition of a natural trans-
formation

§ : MP = PT.

As usual in the Stone duality approach towards coalgebraic logic, the existence of § cor-
responds to the soundness of the logic. To get an idea of why this is the case, observe
that the existence of d enables us to see a T-coalgebra X = (X, ) as an M-algebra, namely
its complex algebra X* := (IP’X Peos x). Finally, as we will see in the final part of our
stratification-based proof, the completeness of M is based on the observation that

d is injective, (1.6)

that is, for each set X, the BA-homomorphism dx : MPX — PTX is an embedding. The
proof of ([L.6l), which technically forms the heart of our proof, is based on the fact that the
nabla-axioms allow us to write depth-one formulas into a certain normal form, and on the
earlier mentioned properties of the functor M.

This paper replaces, extends and partly corrects (c.q. clarifies, see Remark [.8) an
earlier version [34]. The main differences with respect to [34] are the following. First
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of all, we provide a detailed, self-contained overview of the notion of relation lifting and
its properties (which was only covered as Fact 3 in the mentioned paper). Second, our
categorical treatment of presentations and the algebras they present (which is novel to the
best of our knowledge) clarifies and substantially extends the treatment in [34]. Third, our
axiomatization simplifies the earlier one; in particular, we show here in detail that we do not
need axioms or rules specifically dealing with negation (more specifically, we prove that an
earlier rule (V4) is derivable in the system here. Fourth, we provide a more precise definition
and a more detailed discussion of the functor M; for instance, the result that M preserves
atomicity is new. Fifth and final, we show here in much more detail and precision how the
soundness and completeness of our axiomatization follows from the one-step soundness and
completeness.

Overview. In the next section we fix our notation, introduce the necessary basic (co-)alge-
braic terminology and discuss properties of functors on the category of sets that will play
an important role in our paper. After that, in Section Bl we recall the notion of a relation
lifting T induced by a set functor 7" and give an overview of its properties. Section @l and
Section [B] introduce the terminology that we need concerning Boolean algebras and their
presentations, and concerning Moss’ coalgebraic logic, respectively.

After that we move to the main results of our paper. First, in Section [6lwe introduce the
derivation system for Moss’ coalgebraic logic and we define the algebra functor M : BA —
BA. In Section [l we prove that our derivation system is one-step sound and complete.
Within the above described categorical framework this is equivalent to establishing the
existence of a natural transformation & : MP = PT (one-step soundness) and proving that
this transformation § is injective (one-step completeness). Finally, in Section [§ we prove
our main result, namely soundness and completeness of our derivation system with respect
to the coalgebraic semantics. We conclude with an overview of related work and open
questions.

Finally, since this paper features a multitude of categories, functors and natural trans-
formations, for the reader’s convenience we list these in an appendix.

Acknowledgement. We thank the anonymous referee for many useful comments.

2. PRELIMINARIES

The purpose of this section is to fix our notation and terminology, and to introduce some
concepts that underlie our work in all other parts of the paper.

2.1. Basic mathematics and category theory. First we fix some basic mathematical
issues. Given a set X, we let PX and P,X denote the power set and the finite power set
of X, respectively. We write Y C,, X to indicate that Y is a finite subset of X.

Given a relation R C X x X', we denote the domain and range of R by dom(R) and
rg(R), respectively, and we denote by 7'('{2 : R — X its first projection and by 7152 R— X'
its second projection map. Given subsets Y C X, Y/ C X', the restriction of R to Y and
Y’ is given as

Rlyxy := RN (Y X Y/).
The converse of a relation R C X x X' is denoted as R*C X’ x X.
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The composition of two relations R C X x X’ and R’ C X’ x X" is denoted by R; R/,
while the composition of two functions f : X — X’ and f': X’ — X” is denoted by f’o f.
That is, we denote function composition by o and write it from right to left and we denote
relation composition of relations by ; and write it from left to right.

It is often convenient to identify a function f : X — X’ with its graph, that is, the
relation Gr(f) = {(z, f(z)) |z € X} C X x X'. For example given a relation R C X x X'
and a function f : X’ — X" we write R; f to denote the composition of relations R; Gr(f).

We will assume familiarity with basic notions from category theory, including those
of categories, functors, natural transformations, (co-)monads and (co-)limits; see for in-
stance [40]. We denote by Set the category of sets and functions, and by Rel the category
of sets and binary relations. BA is the category with Boolean algebras as objects and
homomorphisms as arrows.

Endofunctors on Set will simply be called set functors. We denote by P the power
set functor which maps a set X to its power set PX and a function f : X — X’ to
its direct image Pf : PX — PX', given by P(X) 3 Y — {f(y) | y € Y}. Similarly,
P, X denotes the finite power set functor. P is in fact (part of) a monad (P, u,n), with
nx : X — P(X) denoting the singleton map nx :  — {z}, and px : PPX — PX denoting
union, px(A) := [JA. The contravariant power set functor will be denoted as P; this
functor maps a set X to its power set PX = PX , and a function f : X — X' to its inverse
image Pf: PX' — PX given by PX' 3Y' = {z e X | fr e Y'}.

2.2. (Co-)algebras. We provide some details concerning the notions of an algebra and a
coalgebra for a functor. We start with coalgebras since these provide the semantic structures
of the logics considered in this paper.

Definition 2.1. Given a functor 7' on a category C, a T-coalgebra (X,¢) is an arrow
€:X = TX in C; a T-coalgebra morphism f : (X,¢) — (X', ¢') is an arrow [ : X — X'
such that T'f o & = ¢ o f, in a diagram:

X_f>X/

|, ke

TX —=TX'

The functor T is called the type of the coalgebra (X&), The category of T-coalgebras is
denoted by Coalg(T") and we denote coalgebras by capital letters X,Y,... in blackboard
bold.

In the case of a set coalgebra (that is, a coalgebra for a set functor), elements of the
(carrier of the) coalgebra will be called states of the coalgebra, and a pointed coalgebra is a
pair consisting (X, x) consisting of a coalgebra X = (X, ¢) and a state = of X. <

Here are some simple, standard examples of coalgebras for set functors.

Example 2.2.

(1) We let Id denote the identity functor on Set. Given a set C, we let C itself also denote
the constant functor, mapping every set X to C, and every function f to the identity
map idc on C. Coalgebras for this functor are called C-colorings; in case C' is of
the form P(Prop) for some set Prop of proposition letters, we may think of a coloring
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¢ : X — C as a Prop-valuation (in the sense that £ says of every proposition letter p
and every state x whether p is true of = or not).

(2) A Kripke frame (S, R) can be represented as a coalgebra (S,or) for the power set
functor P, with og : S — PS mapping a point s to its collection of successors. It is
left as an exercise for the reader to verify that the coalgebra morphisms for this functor
precisely coincide with the bounded morphisms of modal logic.

(3) Coalgebras for the functor Po P (that is, the contravariant power set functor composed
with itself) can be identified with the neighborhood frames known from the theory of
modal logic as structures that generalize Kripke frames. As a special case of this, but
also generalizing Kripke frames, the monotone neighborhood functor N maps a set X
to the collection N(X) := {& € PPX | a is upward closed }, and a function f to the
map PP f.

(4) For a slightly more involved example, consider the finitary multiset or bag functor B,,.
This functor takes a set X to the collection B, X of maps p : X — N of finite support
(that is, for which the set Supp(u) := {x € X | pu(z) > 0} is finite), while its action
on arrows is defined as follows. Given an arrow f : X — X’ and a map p € B, X, we
define (B, f)(n) : X’ — N by putting

(Buf) () () := Y fulx) | fla) =a'}.

(5) As a variant of B,, consider the finitary probability functor D,,, where D,X = {0 :
X —[0,1] | Supp(d) is finite and ) . d(x) = 1}, while the action of D,, on arrows is
just like that of B,,.

Example 2.3. Many examples of coalgebraically interesting set functors are obtained by
composition of simpler functors. Inductively define the following class EKPF of extended
Kripke polynomial functors:

T:=1I1d|C|P|B,| Dy, | TooT | To+ Ty | Ty x Ty | TP,

where o, + and x denote functor composition, coproduct (or disjoint union) and product,
respectively, and (—)” denotes exponentiation with respect to some set D. Examples of
such functors include:

(1) Given an alphabet-color set C, the C-streams are simple specimens of coalgebras for
the functor C' x Id; similarly, C-labelled binary trees are coalgebras for the functor
Be=C x Id x Id.

(2) Labelled transition systems over a set A of atomic actions can be seen as coalgebras for
the functor P(—)4.

(3) Deterministic automata are coalgebras for the functor (—)* x 2 where ¥ is the finite
alphabet.

(4) Kripke models over a set Prop of proposition letters can be identified with coalgebras
for the functor P(Prop) x P(—) = P o Cpyp X P o Id.

(5) Generalizing the previous example, viewing T-coalgebra as frames, we can define T'-
models over a set Prop of proposition letters as coalgebras for the functor Tpyp =
P(Prop) x T(—).

As running examples through this paper we will often take the binary tree functor over a
set C' of colors, and the power set functor.

The key notion of equivalence in coalgebra is of two states in two coalgebras being
behaviorally equivalent. In case the functor T admits a final coalgebra Z = (Z,() the
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elements of Z often provide an intuitive encoding of the notion of behaviour, and the
unique coalgebra homomorphism !x can be seen as a map that assigns to a state x in X
its behaviour. In this case we call two states, z in X and 2’ in X/, behaviorally equivalent
if Ix(z) =!x(2'). In the general case, when we may not assume the existence of a final
coalgebra, we define the notion as follows.

Definition 2.4. Two elements (often called states) x, 2" in two coalgebras X and X', respec-
tively, are behaviorally equivalent iff there are coalgebra morphisms f, f’ with a common
codomain such that f(z) = f'(2/). <

Turning to the dual notion of algebra, we shall use algebras mainly to describe logics
for coalgebras, and the notion of an algebra ‘for a functor’ will provide us with an elegant
way to exploit the duality with coalgebras.

Definition 2.5. Given a functor L on a category A, an L-algebra (A, «) is an arrow « :
LA — Ain A and an L-algebra morphism f : (A,«a) — (A’,a/) is an arrow f : A — A’ such
that f oa =o' o Lf. The category of L-algebras is denoted by Alg(L). <

Example 2.6.

(1) If A = Set, then every signature (or similarity type) induces a functor LX = [[,,_,, Opn %
X™ where Op,, is the set of operation symbols of arity n. Then Alg(L) is (isomorphic
to) the category of algebras for the signature.

(2) If A = BA, then we can define a functor L : BA — BA to map an algebra A to the
algebra LA generated by Oa, a € A, and quotiented by the relation stipulating that
O preserves finite meets. Then Alg(L) is isomorphic to the category of modal algebras
[33].

As the second example above shows, functors on BA give rise to modal logics extending

Boolean algebras with operators.

2.3. Properties of set functors. As mentioned in the introduction, in this paper we will
restrict our attention to set functors satisfying certain properties. The first one of these is
crucial.

Weak pullback preservation. Recall that a set P together with functions p; : P — X7 and
po : P — X is a pullback of two functions fi : X1 — X and fo: Xo = X if fiopy = foops
and for all sets P" and all functions p} : P' — Xy, ph : P’ — X5 such that f op)| = f20p)
there exists a unique function e : P' — P such that p; oe = p] for i = 1,2.

P
Pll lfz

XX
1
If the function e is not necessarily unique we call (P, p1,p2) a weak pullback. Furthermore
we call a relation R C X; x X3 a (weak) pullback of f; and fo if R together with the
projection maps 7f* and 7l is a (weak) pullback of f; and fo.
In the category of sets, (weak) pullbacks have a straightforward characterization
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Fact 2.7. [22]. Given two functions f; : X7 — X3 and fo : X9 — X3, let
pb(f1, f2) == {(x1,22) | fi(z1) = fa(x2)}.

Furthermore, given a set P with functions p; : P — X7 and pg : P — X, let

ey (p1(y), p2(y))-
define a function e : P — pb(f1, f2). Then

(1) (P,p1,p2) is a pullback of fi and fo iff f; o py = f2 0 ps and e is an isomorphism.
(2) (P,p1,p2) is a weak pullback of fi and fo iff fi o p1 = f2 0 po and e is surjective.

A functor T preserves weak pullbacks if it transforms every weak pullback (P, p1,p2)
for fi and fy into a weak pullback (T'P,Tpy,Tp2) for T'f1 and T fo. An equivalent char-
acterization is to require T to weakly preserve pullbacks, that is, to turn pullbacks into
weak pullbacks. Further on in Corollary B.7] we will see yet another, and probably more
motivating, characterization of this property.

Example 2.8. All the functors of Example preserve weak pullbacks, except for the
neighborhood functor and its monotone variant. It can be shown that the property of
preserving weak pullbacks is preserved under the operations o, 4, x and (—)D , so that all
extended polynomial Kripke functors (Example 2.3)) preserve weak pullbacks.

Standard functors. The second property that we will impose on our set functors is that of
standardness. Given two sets X and X’ such that X C X', let tx,x' denote the inclusion
map from X into X’. A weak pullback-preserving set functor T is standard if it preserves
inclusions, that is, if Tux x» = vpx 7x+ for every inclusion map tx x.

Remark 2.9. Unfortunately the definition of standardness is not uniform throughout the
literature. Our definition of standardness is taken from Moss [41], while for instance Addmek
& Trnkova [7] have an additional condition involving so-called distinguished points. Fortu-
nately, the two definitions are equivalent in case the functor preserves weak pullbacks, see
Kupke [32, Lemma A.2.12]. Since we almost exclusively consider standard functors that
also preserve weak pullbacks, we have opted for the simpler definition.

For readers who are interested in some more details, fix sets 0,1 and 2 of of the corre-
sponding sizes (0,1 and 2), respectively, and let e, o denote the two maps e,0: 1 — 2. Then
the second condition of standardness in the sense of [7] can be phrased as the requirement
that 70 = {z € T1 | Ti(z) = To(x)}, in words: all distinguished points are standard.

In any case the restriction to standard functors is for convenience only, since every set
functor is ‘almost standard’ [7, Theorem II1.4.5]. That is, given an arbitrary set functor T,
we may find a standard set functor 7" such that the restriction of 7' and 7" to all non-empty
sets and non-empty functions are naturally isomorphic. The important observation about
T" is that Alg(T") = Alg(T”) and Coalg(T') = Coalg(7”). Consequently, in our work we can
assume without loss of generality that our functors are standard and we will do so whenever
convenient.

Example 2.10. The finitary bag functor B, of Example is not standard, but we may
‘standardize’ it by representing any map u : X — N of finite support by its ‘positive graph’
{(x,pux) | pz > 0}. Similarly, the finite distribution functor D,, can be standardized by
identifying a probability distribution p : X — [0,1] € D, X with the (finite) set {(x, ux) |
pux > 0}.
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Finitary functors. Let T be a set functor that preserves inclusions. Then T is finitary or
w-accessible if, for all sets X,

TX = J{TY | Y C X finite}.

Generalizing the construction of P, from P, we can define, for any set functor 71" that
preserves inclusions, its finitary version T, : Set — Set by putting

T.(X) = (JTY |V C, X},
T.(f) = Tf.

It is easy to verify that T, preserves inclusions, is finitary and a subfunctor of T as we have
a natural transformation 7y : T,X < TX. Given the definition of the action of T, on
arrows, we shall often write T'f instead of T, f.

In order to avoid confusion, we already mention the following fact, but we postpone its
proof until subsection [3.31

Proposition 2.11. Let T be a standard set functor that preserves weak pullbacks. Then
T, is also a standard functor that preserves weak pullbacks.

The reason that we are interested in finitary functors is that we want our language to be
finitary, in the sense that a formula has only finitely many subformulas. The key property
of finitary functors that will make this possible, is that every a € T'X is supported by a
finite subset of X, and in fact, there will always be a minimal such set.

Definition 2.12. Given a finitary functor 7" and an element o € T X, we define
Basek (a) == ﬂ{Y Co X |aeTY}.
<
We write Base” rather than Base™®, and in fact omit the superscript whenever possible.

Example 2.13. The following examples are easy to check: Basegg : X — P,X is the
singleton map, Basel)? : P,X — P,X is the identity map on P, X, Basef}c Cx X xX —
P, X maps the triple (¢, 1, z2) to the set {x1, 2}, and BaseP~ maps a finitary distribution
to its support.

Proposition 2.14. Let T : Set — Set be a standard functor that preserves weak pullbacks.

(1) For any o € T, X, Basek () is the smallest set Y such that o € TY .
(2) Basel provides a natural transformation Base : T, — P,,.
Proof. Part (1) is proved in [55].

For the second part, consider a map f : X — X’. We have to show P, f o Basex =
Basex: oT, f. Fix a € T,,X and write B = Basex(«) and B’ = Basex/(T,,f(«)). We need
to prove B’ = f[B].

For the inclusion “C”, from

To f

T,X T.,X'
we see that f[B] supports T, f(«) and, as B’ is the smallest such, B’ C f[B] follows.
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For the opposite inclusion “2”, since T, preserves weak pullbacks, the dotted arrow in

(B)
T,X T,X'

exists and shows that a € T,,(f~1(B’)). By minimality of the base, it follows B C f~1(B’),
that is, B’ O f[B]. (]

Tof

Remark 2.15. A stronger version of the previous proposition follows from results in [23].
Let us briefly sketch the details using the terminology of [23]. First of all note that it is not
difficult to see that all finitary set functors preserve intersections. Therefore [23, Theorem
7.4] implies that Base is sub-cartesian (not necessarily natural) and this implies together
with [23, Theorem 8.1] that T preserves preimages iff Base is natural. Any weak pullback
preserving functor preserves preimages and thus this statement implies Proposition 2.141

3. RELATION LIFTING

Given the key role that the lifting of binary relations plays in the semantics of Moss’ logic,
we need to discuss the notion in some detail. After giving the formal definition, we mention
some of the basic properties of relation lifting: first the ones that hold for any functor, then
the ones for which we require the functor to preserve weak pullbacks, and finally, we see
important technical properties of relation lifting that rest on the fact that the set functor
under consideration is standard. We discuss the connection of the relation lifting with
categorical distributive laws: as we will see later on, this connection plays an important
role in the axiomatization of V. Finally we introduce the notion of a slim redistribution,
which is needed to formulate one of our axioms.

3.1. Basics. First we give the formal definition of relation lifting.

Definition 3.1. Let T" be a set functor. Given a binary relation R between two sets X3
and X5, we define the relation TR C T X7 x T X9 as follows:

TR := {((Tm{")p, (Tm3)p) | p € TR}.
The relation TR will be called the T-lifting of R. <

In other words, we apply the functor 1" to the relation R, seen as a span X; UL - JL RS X,
and define TR as the image of TR under the product map (T'my,T'm2) obtained from the
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lifted projection maps T'w and T'w’. In a diagram:
X, —= R

2

Xo

T T

TR

:

(T 7r2) TR

|

TX1 X TX2
Let us first see some concrete examples.

TX1 TX2

Example 3.2. Fix two sets X and X', and a relation R C X x X’. For the identity and
constant functors, we find, respectively:
IdR = R
CR = idc.
The relation lifting associated with the power set functor P can be defined concretely as
follows:
PR={(A,A) € PX x PX' |Va€ A3d' € A'.aRa’ and Va' € A'Ja € A.aRa'}.

This relation is known under many names, of which we mention that of the Egli-Milner

lifting of R. Relation lifting for the finitary multiset functor is slightly more involved: given

two maps u € B, X, ' € B,X', we put

p By R ' iff there is some map p : R — N such that Vo € X.> {p(x,2') | 2/ € X'} = u(x)
and V2’ € X'. Y {p(z,2') |z € X} = p/ (/).

The definition of D, is similar.
Finally, relation lifting interacts well with various operations on functors [25]. In par-
ticular, we have

TooT'R = To(TiR)

To+TiR = ToRUTIR

ToxTiR = {((¢.&),(&,&)) | (&, &) € TR, fori e {0,1}}
TPR = {(p,¢") | (¢(d),¢'(d)) € TR for all d € D}.

From this one may easily calculate the relation lifting of all extended Kripke polynomial
functors of Example 2.3l

Remark 3.3. Strictly speaking, when defining the T-lifting of a relation R C X7 x X5, we
should explicitly mention the type of R, that is, the pair of sets X; and Xo.

To see this, let X1, X2,Y] and Ys be sets such that ¥; C X;, for ¢ € {1,2}. Now any
relation R C Y7 X Y5 can also be seen as a relation between X; and Xs. But in general
we do not have TY; C TX;, and so the relation TR C Y] x Y5 is not necessarily a relation
between X7 and Xs. It is easy to see that if T preserves inclusions, then this problem
evaporates. Since we will assume 7" to be standard almost throughout the paper, we ignore
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this subtlety for the time being. Readers who are worried about this may add the condition
that T" preserves inclusions throughout the subsections B.1] and

Remark 3.4. Relation lifting can be used to define the notion of a bisimulation between
two coalgebras. Recall that, given two coalgebras X; = (X7,&) and Xy = (X9, &), a
relation Z x X7 x X5 is a bisimulation if there is a coalgebra map ¢ : Z — T'Z making the
two projection functions 7 : Z — X7 and m : Z — X5 into coalgebra morphisms. It can
be shown that this is equivalent to requiring that & (x1) TZ &(22) whenever x1 Z 5.

As mentioned, in this section we will discuss some important properties of relation
lifting. We start with listing a number of properties that T-lifting has for any given set
functor T'. The proof of the fact below is elementary.

Fact 3.5. Let T be an arbitrary set functor. Then the relation lifting T'

(1) extends T: T'f = Tf for all functions f : X; — Xo,

(2) preserves the diagonal: Tldx = Idrx for any set X;

(3) is monotone: R C @ implies TR C TQ for all relations R,Q C X1 x Xo;

(4) commutes with taking converse: TR’ = (TR)” for all relations R C X7 x Xo.

3.2. Weak pullback preserving functors. Fact B states a number of operations on re-
lations that interact well with relation lifting. Conspicuously absent in that list is relational
composition: observe that T would be a functor on the category Rel if it would satisfy
T(R;Q) =TR;TQ. Here we arrive at the main reason why we are interested in functors
that preserve weak pullbacks: as we will see now, that property is a necessary and sufficient
condition on T for T to be functorial.

In fact, given the characterisation of (weak) pullbacks in the category Set, in terms of
the relation pb (see Fact 2.7)), it is easy to formulate the composition R ;@ of two relations
R and @ as a pullback of the projection maps 775[z and 77?. Therefore it is not surprising that
the question whether the T-lifting of a relation commutes with the composition of relations
is tightly connected with the preservation of weak pullbacks by 7T'. The following fact was
first proved in [54].

Fact 3.6. A functor T : Set — Set weakly preserves pullbacks iff for all relations R C
X1 x X9 and Q C Xy x X3 we have

T(R;Q)=TR;TQ. (3.1)
Proof. First, assume that T preserves weak pullbacks and let R C X7 x X9 and Q) C X9 X X3
be two binary relations. The pullback of 74 and ﬁ? is given by the following set:

pb == {((z1,22), (3, 24)) | (21, 22) € R, (x3,74) € Q and x3 = w3},
and there is a surjective map e : pb(rZ, 7T1Q) — R:;Q given by e({(x1,x2), (x3,24))) = (1, 24)
with the property that

; b ; b
Wf’Qoe:Wfowf and W?’Qoezwgowg. (3.2)

The situation is depicted in Figure [l -
We now prove ([B). For the inclusion “C”, let (x,y) € T(R ; Q). By definition

there exists some z € T(R ; Q) such that Tri'?(z) = z and T7i9(z) = y. We know
that e and thus also Te is surjective. Therefore there exists some z’ € T(pb) such that
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Figure 1: Composition of relations & pullback

Te(z') = z, and using ([3.2) we obtain Tﬂf(Tﬂfb(z’)) = TWF;Q(TG(Z,)) = TWF;Q(Z) =z
and similarly T7r§2 (Tﬂ'gb (2')) = y. On the other hand, by the definition of pb, we have
T7T§(T7be(z’)) = TﬂlQ(Tﬂfb(z’)) = u. This implies that (z,u) € T(R) and (u,y) € T(Q)
and we proved (x,y) € T(R) ; T(Q) as required.

For the converse inclusion suppose that (z,y) € T(R);T(Q). We want to prove that this
implies (z,y) € T(R; Q). It follows from (x,y) € T(R) ; T(Q) that there is some u € T X5
such that (z,u) € T(R) and (u,y) € T(Q); spelling out the definitions we find a u, € TR
and a u, € TQ such that Trf(u,) = =, Tﬂ?(uy) =y and Trl(u,) = Tﬂ?(uy) = u. By
our assumption that 7' is weak pullback preserving we have that T'(pb), together with the
maps T'm? b, Tﬂ'gb is the weak pullback of T7¥ and T ﬁ?. Therefore there must be some
2 € T(pb) such that T7"°(z) = u, and Tw8’(z) = u,. This implies

Tr(i9(Te(2)) = Trf{(Tal’(2)) = Trfi(us) = 2
and likewise T7T§;Q(T€(Z)) = y. By definition this means that (z,y) € T(R;Q) as required.

For the converse implication of the statement of the proposition, suppose that T does
not preserve weak pullbacks and let the following be a pullback that is not weakly preserved
by T"

P2, x,
W
Xl—f>X3

Then it is not difficult to see that the following isomorphic diagram, is also a pullback
diagram that is not weakly preserved by 7"
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where Gr(f) and Gr(g)” denote the graph of f and the converse of the graph of g, respec-
tively, and R C Grf x Grg” is the pullback of 775 and F‘i]u. We will show the existence of a
pair (z,y) € Tf;Tg \T(f ; g"), which is a clear counterexample to (B.I).

As before there is a surjection ¢’ : R — f ; g~ satisfying

w{;gv o€ = w{ o7f and wg;gv oe = ng omf (3.3)
By assumption, (TR, TnF, 7lt) is not a weak pullback of T wg and Tﬂ'{. Hence by Fact 2.7](2),

there must be a z; € TGr(f) and a 29 € T'Gr(g)” such that Tﬂg(zl) = T (22) = u, while
there is no z € TR such that T7f(z) = z; and Tn¥(2) = 2. (3.4)

Define z := Tﬂ{(zl) and y = Tﬂgv(ZQ). Since ﬂg =fo 71{, we have Tﬂ'g =Tfo TT('{,
and so we find u = (Tf)x; likewise, we obtain u = (T'g)y. From this it is clear that
(x,y) € Tf;Tg". Now suppose for a contradiction that (x,y) € T(f;g"). By definition this
entails the existence of some 2’ € T(f ; g°) such that Tﬂ'{;g (7) =z and T7T2f;g (') =y. By
surjectivity of ¢/, and hence, of T'¢’, then there must be some 2" € TR such that Te(z") = 2/.
Furthermore it follows from (B.3]) that

z=Tr]9 () = Tr]9 (T (")) = Tr{ (T { ("))

and, similarly, y = Tﬂ'gu(Tﬂ'éz(Z// )). Both TT('{ and Tﬂ'gv are isomorphisms and thus we
obtain Tmf(2") = 21 and T (2") = 2 - a contradiction to ([3.4]) above. O

Putting this together with Fact B.5(2,3) we immediately obtain the following.

Corollary 3.7. Let T be a set functor and let T be the operation that maps a set X to
TX :=TX and a relation R to the T-lifting TR of R. Then the following are equivalent:

(1) T preserves weak pullbacks;
(2) T is a functor on the category Rel of sets and relations;
(3) T is a relator, that is, a monotone functor on the category Rel.

Closely related to this is an important consequence of the functor preserving weak
pullbacks, namely that the notions of bisimilarity and behavioral equivalence coincide.

Remark 3.8. In [406] it is proved that if T preserves weak pullbacks then for any pair of
coalgebras X = (X, ¢) and X' = (X', ¢’), two states x and 2’ are behaviorally equivalent iff
there is a bisimulation (see Remark 34) linking x to 2.

3.3. Standard functors. As mentioned earlier on we will almost exclusively work with Set-
functors that are standard. In Remark B.3] we saw that this will ensure that the definition
of the lifting of a relation R is independent of the type of R. Now we will see some further
nice consequences of standardness for the notions of relation lifting.

To start with, in case T is standard, T' commutes with the domain and range of a func-
tion; and if T" preserves weak pullbacks in addition, then T" also commutes with restrictions.

Proposition 3.9. Let T be a standard set functor. Then

(1) T commutes with taking domains: dcin(TR) = T(domR) for all relations R C X7 x Xo.
(2) T commutes with taking range: mg(TR) = T(rngR) for all relations R C X1 x Xo.
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(3) If T preserves weak pullbacks, then T commutes with taking restrictions:

T(Rlyvixvs) = (TR) ITvix1vs

for all sets X1, X9,Y1 and Yo, with Y1 C X1 and Yo C Y1, and for all relations R C
X1 X XQ.

Proof. For part 1, we first consider the inclusion dom(TR) = T(domR). Let R C X; x X
be a relation and take an element a € dom(TR). Then (o, ) € TR, for some 8 € TX>.
We denote by ¢ : dom(R) — X, the inclusion of dom(R) into X; and by 7} : R — dom(R)
the restriction of the projection map m : R — Xj; then we have m = ¢ o 7}. By definition
of T there exists some p € TR such that Tm(p) = o and hence Tu(T7)(p)) = a. As T is
standard this shows that o = T} (p) € Tdom(R) as required.

For the opposite inclusion, let f : dom(R) — rng(R) be any map such that f C R; then
it follows that 7'f C TR. In other words, for all & € T'(domR) we have a TR T'f(c). From
this it is immediate that T'(domR) C dom(TR).

The proof of part 2 is completely analogous. For part 3, we refer to [35, Prop. 6.4]. [J

Proposition is particularly useful for linking the relation lifting of T" to that of its finitary
version T,.

Proposition 3.10. Let T be a standard and weak pullback preserving set functor, let T, be
its finitary version and let R C X7 X Xy be a relation. Then

T.,R=TRnN(T,X; x T,X3).

Proof. Let R C X3 x X3 be a relation and take a pair («, 8) € T,, X1 x T,,X5. By definition
of T,, there must be finite sets X| C,, X7 and X} C, X5 such that o« € T, X = T X} and
B € T,X, =TX}.

In order to prove the inclusion D, assume that (o, 3) € TR. By Proposition we
have

(,8) eTR Hf (a,8) € T(RIx;xxy) (3.5)

and because T,,(R | xixxy) € T, (R) the inclusion holds if we can prove that (o, 3) € T, R’
with R := R| X% X} - The following diagram commutes:

T,X| ~<— T,R — T, X}

TX; TR TX)
Therefore we have that (a,3) € TR iff (o, 8) € T,R'. By B.35) we have (a,) € TR’ and
hence («, ) € T,,R" as required. The proof of the opposite inclusion is similar. ]

On the basis of Proposition B.I0 we will often be sloppy and write (o, 3) € TR instead
of (a, B) € T, R, for elements o € T,,X; and 3 € T, X3. More importantly, Proposition 310
allow us to prove our earlier claim, that T, inherits the properties of standardness and weak
pullback preservation from 7.
Proof of Proposition 2.7 Let T be a standard, weak pullback preserving set functor.
In order to see that T, is standard consider two sets X, X’ with X' C X and let 1 : X/ — X
be the inclusion of X’ into X. By the definition of T}, for every set X we have that T, X is
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a subset of T X and that the inclusion 7x : 7, X — T'X is natural. It follows by naturality
that T,,¢ is also an inclusion:

T,X' X 17X
TWL\L T
TUJXC7 TWX
More precisely, for all a € T;,X we have
T,i(a) = 7x(Tou(a)) Tu(rh(a)) = Te(er) T2 o
which demonstrates that T},¢ is the inclusion map from 7, X’ into T,,X, and shows that T,
is standard indeed.
We now prove that T, preserves weak pullbacks. By Fact it suffices to prove that
for arbitrary relations R C X; x Xo and @ C X2 x X3 we have T,,(R; Q) = T,(R) ; T,(Q).
In order to see this we use Proposition 3.10l We have
(a,8) € TL(R;Q) iff (o) € T(R; Q) I1,x,xT0Xs
iff (a,B) € T(R;Q)Irx;xrx; forsome Xj Cyy X3, X3 Cy, X3
iff (a,B) € T((R; Q) Ix1xx; ) for some Xj C,, X1, X3 C, X3

iff (@, 8) € T(RIx;xx; 3Q [xpxx;)
for some X| C,, X1, X5 C, Xo, X} Cy X3
iff (o,8) € T(RIx;xxy) i T(QIxpxxy)
for some X| C,, X1, X5 C, Xo, X} Cy X3
it (0, 6) € To(R) : To(Q) O

(nat. of 7)

Finally, we finish this subsection with noting that relation lifting interacts well with the
natural transformation Base : T,, — P,,.

Proposition 3.11. Let T' be a standard functor that preserves weak pullbacks. Given a
relation B C X1 x Xo and elements a; € TX;, 1 € {1,2}, it follows from a1 TR ay that
Base(ay) PR Base(asg). In particular, we have that Base(ay) C dom(R) and Base(asz) C
mg(R).

Proof. Let 7TZ-R be the projection of R to X;, then it follows from oy TR a that oy = T7TZR(,0)
for some p € TR. But then by naturality of Base we find that Base(a;) = Base(TtE(p))
(Prft)(Base(p)), and so Base(p) € PR is a witness to the fact that Base(a;) PR Base(az

~—

]

3.4. Relation Lifting & distributive laws. A relation that plays an important role in
our paper is the T-lifting of the membership relation €. If needed, we will denote the
element relation, restricted to a given set X, as the relation € x C X x PX.

Definition 3.12. Given a standard functor T that preserves weak pullbacks, we define, for
every set X, a function )& :TPX — PTX by putting

Xe (@) :={aeTX |aTex d}.
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Elements of X (®) will be referred to as lifted members of ®. The family X' = {X}} xeset
will be called the T'-transformation. <

Properties of T' are intimately related to those of X'. In order to express the connection,
we need to introduce the concept of a distributive law.

Definition 3.13. Let T be a covariant set functor. A distributive law of T over a (co-
or contravariant) set functor M is a natural transformation 6 : TM — MT; that is, the
following diagram commutes, for every map f: X — Y:

TMX X MTXx
™ fl lMT I
T™MY 2 MTY

(Clearly, in case M is a contravariant functor the downward arrows have to be reversed.)
For 6 to be distributive law of T over a set monad (M, n, i), we require in addition that 6
is compatible with the monad structure, in the sense that the following diagrams commute,
for every set X:

TX X X TMMX 22 yrvx 2% T x (3.6)
N -
MTX TMX . MTX
X

<

If the functor T' preserves weak pullbacks, the T-transformation X' provides a distribu-
tive laws of T" over the power set monad P = (P, {-},|J). A detailed proof of this fact can
be found in [29] Sec. 4].

Fact 3.14. If T preserves weak pullbacks, X = {)&} Xeset 18 a distributive law of T over
the power set monad P.

What it means, set-theoretically, for X' to be a distributive law of T over P is the
following. The fact that X is a natural transformation from TP to PT is another way of
saying that for every map f : X — Y, and every object & € TPX, we obtain the lifted
members of T'P® by applying the operation T'f to the lifted members of ®. The diagram on
the left of (B.6]), relating the singleton map nx : X — PX to the T-transformation, states
that an object o € TX is always the unique lifted member of the lifted set Tnx(«). To
understand the diagram on the right, recall that the multiplication p of P is the union map
Uy : PPX — PX. Applying the functor to this we obtain a map T'{Jy : TPPX — TPX.
Observe that given an object ® € TPPX, we may thus take lifted members of (T'(Jy)(P);
however, we may also take lifted members of ® itself, and since each of these will belong
to the set T PX, we may repeat the operation of taking lifted members. Now the right
diagram in (B3.6)) states that the lifted members of (T'|Jy)(®) coincide with the objects we
may obtain as lifted members of lifted members of .

Remark 3.15. The existence of a distributive law of a set functor T over the power set
monad P corresponds to an extension of the functor 7' to the Kleisli category KI(P) of
P. Furthermore it is easy to see that KI(P) is isomorphic to the category Rel of sets
with relations. Putting these facts together it is clear that any distributive law of a set
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functor 1" over P corresponds to an extension of 7" to a functor on the category Rel. We
saw in Corollary [3.7] that the T-lifting of a relation can be used to extend T' to a functor
T : Rel — Rel iff T preserves weak pullbacks. In this case X' is the corresponding distributive
law. Further remarks and references can be found in Section

Perhaps somewhat surprisingly, the T-transformation can be also seen as a distributive
law over the contravariant power set functor.

Proposition 3.16. Let T : Set — Set be a functor that preserves weak pullbacks. Then X
is a distributive law of T over the contravariant power set functor.

Proof. Let f : X — Y be a function. We have to show that the following diagram commutes:
Vi
TPY — o PTY
TP fl lﬁT f
TPX —= PTX
X
This can be verified by a straightforward calculation:
o € X (TPF)(®) i STPf;Tax)a iff B(T(Pf;ox))a
iff ®T0Oy;f)a iff ®Tzv;Tf)a
it Tf(a)eAy(®) iff ae (PTf)(A\v(®))
Here we freely apply properties of relation lifting, and in the third equivalence we use the
easily verified fact that Pf ;>5x =2y ; f". L]

In our paper both distributive laws play an important role. The fact that X is a dis-
tributive law over P is essential for proving that the semantics of Moss’ logic is bisimulation
invariant, and the distributivity of 7' over the monad P is crucial for the soundness of our
axiomatization.

To finish this subsection, we gather some elementary facts on the T-transformation.

Proposition 3.17. Let T be a standard, weak pullback-preserving functor, let X be some
set and let ® € T,,PX.

(1) If @ € Base(®) then X'(®) = @.

(2) If Base(®) C {Y} for someY C X, then X'(®) C TY.

(3) If Base(®) consists of singletons only, then | X (®)| = 1.

(4) If T maps finite sets to finite sets, then for all ® € T,P,X, |X'(®)| < w.

(5) If ® € T,P,X, then X'(®) € PT, X.

Proof. For part 1, assume that @ € Base(®) and assume for contradiction that « is a lifted
member of ®. It follows by Proposition B.I1] that Base(a) PE€ Base(®). But from this
it would follow, if & € Base(®), that Base(a) contains a member of &, which is clearly
impossible. Consequently, the set X'(®) must be empty.

In order to prove part 2] assume that ® € T{Y'}, for some subset Y of X, and suppose
that « T€ ®. Then by Proposition B9(3) we have o T'; ® and so by part 1 of the
X (v} )=TY.

For part 3, observe that another way of saying that Base(®) consists of singletons only,
is that ® € T,,Sx, where Sx C PX is the collection of singletons from X. Let 0x : Sx — X
be the inverse of nx, that is, fx is the bijection mapping a singleton {z} to z. Clearly then,

Xx{Y}
same Proposition we find o € T'dom(¢&;
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the map T,,0x : T,X — T,Sx is a bijection as well. In addition, we have 0x~ = €x, from
which it follows by elementary properties of relation lifting that (T0x)” = T€x. From this
it is immediate that if ® € T,,Sx, then (T0x)(®) is the unique lifted member of ®.
Concerning part 4, assume that & € T,P,X. Then by definition, ® € TY for some
Y C, P,X. From this it follows that ) C PY for some finite Y C X, and this implies
that Base(®) C PY. If a is a lifted member of ®, then by Proposition B.IT] we obtain
Base(a) P€ Base(®), and so in particular we find Base(a) C |J Base(®) C Y. From this
it follows that X '(®) C TY, and so by the assumption on 7', the set X' (®) must be finite.
Finally, we consider part 5. Take an object ® € T,,P,X and let & € T X be an arbitrary
lifted member of ®. Reasoning just as for part 4, we obtain that o € T'Y for some finite
Y C X, and so by definition of T, we find that o € T,, X. L]

3.5. Slim redistributions. The syntax of Moss’ logic is built using negations, conjunc-
tions, disjunctions and the V-operator. An axiomatisation of the logic has to specify the
interaction of these operations. As we will see, so-called slim redistributions are the key to
understand how conjunction interacts with the V-operator.

Definition 3.18. Let T be a set functor. A set ® € TPX is a redistribution of a set
A € PTX if A C Xo(®), that is, every element of A is a lifted member of ®. In case
A€ PJT,X, we call a redistribution ® slim if ® € T,,P,,({U,e 4 Base()). The set of slim
redistributions of A is denoted as SRD(A). <

Intuitively, redistributions of A are ways to reorganize the material of A. The slimness
condition ® € T, P, (|J,e 4 Base(a)) should be seen as a minimality requirement, ensuring
that ® is ‘built from the ingredients of A’.

Example 3.19. First we consider the binary C-labelled tree functor Bo of Example 2.3
Let m¢, w1 and 7o denote the respective projections from BoX to C, X and X, respectively.
An object ® € BoPX is of the form (¢,Y,Z) with ¢ € C and Y, Z € PX. Such a ® is a
redistribution of a set A = {(¢;,v:,2i) |1 € I} C, BeX iffforalli € I wehavec; =c¢,y; €Y
and z; € Z, and such a redistribution is slim if in addition, YUZ C {y; | i € I}U{z | i € I}.
On this basis it is not hard to derive that

{(c,2,2) | ceC} itA=0

SRD(A)=( © if | [A]] > 2

{(ca, S1,52) | m;[A] €S Cm[A]UmA] for j =1,2} if mo[A] = {ca}
Remark 3.20. For our purpose it would suffice to consider instead of SRD(A) a smaller
set SRD'(A) as long as it order-generates SRD(A) in the sense that for all ® € SRD(A)
there is ® € SRD’(A) such that ® T(C) ®. Such an SRD’(A) can replace the SRD(A) in

the rule (V2) that will form a crucial part in our derivation system. In the example above,
SRD'(A) can be given by simplifying the third clause to

{(ca,m[A], m[A])} if mc[A] = {ca}
We thank Fredrik Dahlqvist for pointing out that this clause does not give SRD(A).

Example 3.21. In case we are dealing with the power set functor P, first observe that
given a set X, the relation Pex C PX x PPX is given by

aﬁe(IDiffaguq)andaﬁﬁ#@forallﬂeq).
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On the basis of this observation it is easy to check that ® € PX is a redistribution of
Ae PPX if  JAC|® and anp # @ for all & € A and § € ®. Furthermore, we obtain

e SRD(A)iff | JA=|JPandanp#£ @ forallac A, fed.

Hence, in the case of the power set functor we are dealing with a symmetric relation:
® € SRD(A) iff A € SRD(®D).

The following observation, which is due to M. Bilkovd, shows that slim redistributions
naturally occur in the context of distributive lattices.

Example 3.22. Let D be a distributive lattice. The distributive law for ID can be formulated
as follows. For any set A € P,P,D, we have

AVa= \/(A)/\rng(v),

acA veCF

where CF(A) is the set of choice functions on A, that is, CF(A) is the set of mapsy: A — D
such that y(a) € a, for all a € A. Then it is straightforward to verify that the set
{mg(y) | v € CF(A)} is in fact a slim redistribution of A.

In fact, we may prove that

AVe= "V VAe (3.7)

acA PeSRD(A) pe®

Later on we will see that our axiom governing the interaction of V with conjunctions,
generalizes (3.7)).

We finish the section with a proposition for future reference.
Proposition 3.23. SRD(2) = T{2}.

Proof. If ® is a slim redistribution of the empty set, then by definition ® € TP, (@) = T{&}.
Conversely, any ® € T{@} satisfies the condition that @ C X'(®), and so ® € SRD(2). [J

3.6. Notes. The relation lifting via spans as in Definition B.I] was defined by Barr in [10),
Section 2]. Without stating it explicitly, he also proves that the relation lifting T is a
functor on Rel iff T preserves weak pullbacks; see also Trnkova [54] and, for a generalisation
beyond set functors, Carboni, Kelly and Wood [18] 4.3] and Hermida [24, Theorem 2.3]. [18]
also studies the question which functors Rel — Rel arise from functors Set — Set. Closely
related notions of relator, also accounting for simulation as opposed to only bisimulation, are
studied by Thijs [53] and in the context of coalgebraic logic by [9, 19} 27]. The connection
between coalgebraic logic and relation lifting goes back to the original paper by Moss [41]
which introduced V and defined its semantics by using relation liftings, albeit without
making this notion explicit. Independently, essentially the same notion of relation lifting
was studied in a fibrational setting by Hermida and Jacobs [25]. For a comparison of the
notions of bisimulation arising from relation lifting and related definitions see Staton [51].

The relation lifting can also be obtained via a distributive law between a functor and
a monad as in Definition B.I3] which is a slight, commonly used variant of the notion of
a distributive law between monads [11]. As shown in [I1], there is a 1-1 correspondence
between distributive laws and liftings of functors to the category of algebras. Similarly,
distributive laws A : TM — MT between a functor T and a monad M, or monad op-functors
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(T, \) : (Set, M) — (Set, M) in the terminology of Street [52], are in 1-1 correspondence
with liftings T of T to the Kleisli category of M.

We thank Dirk Hofmann, Jifi Velebil and Steve Vickers for pointing out various refer-
ences and their significance.

4. BOOLEAN ALGEBRAS AND THEIR PRESENTATIONS

4.1. Boolean-type algebras. It will be convenient for us to work with a syntax for
Boolean logic and Boolean algebras, in which the finitary meet and join symbols, A and
\/, respectively, are the primitive symbols for the conjunction and disjunction operation,
respectively.

Definition 4.1. Given a set X, we let L£o(X) denote the set of Boolean terms/formulas
over X, defined by the following grammar:

a x=zeX|-alVe|Ap,
where ¢ is a finite set of Boolean terms. We abbreviate | :=\/ @ and T := A &, and if no
confusion is likely we will write Lo := Lo(9). <

Observe that each L£y(X) is non-empty, always containing the elements T and L.
The above definition can be brought in coherence with the categorical perspective of
section [2, as follows.

Definition 4.2. We define the category Boole of Boolean-type algebras as the algebras for
the functor Set — Set, X — X + P,X + P,X. A Boolean-type algebra will usually be
introduced as a quadruple B = (B, -, /\B, \/B>, where B is the carrier of the algebra, and
~B: B — B,and \®,\/® : P,(B) — B the Boolean operations. <

Note that this perspective has built in that both conjunction and disjunction are com-
mutative, associative and have a neutral element.

We let U : Boole — Set denote the forgetful functor, and IF : Set — Boole its left adjoint;
that is, given a set X, FX denotes the absolutely free Boolean-type algebra, or Boolean
term algebra, over X. Note that FX is not a Boolean algebra. Given a set X, observe that
UF(X) consists of the set Lo(X) of all Boolean terms/formulas using the elements of X as
variables. In fact, we may extend Ly to the set functor Ly : Set — Set given by

Ly :=UF. (4.1)

In this way we obtain the well-known term monad for the Boolean signature with the usual
unit 7 : Id — Ly (‘variables are terms’) and multiplication p : LoLy — Lo (‘terms built
from terms are terms’).

F
PN
Lo QSetJoole
U

In particular, for any f : X — LgY there is f: Lo X — LoY which extends f and can be
defined as the composition uy o Lof. Logicians will recognise f as the substitution induced

by f.
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Definition 4.3. Given a set X and a Boolean-type algebra B, a map f : X — UB is called
an assignment. Because of the adjunction F - U, such an assignment has a unique extension
to a Boole-homomorphism, denoted by

f:FX — B.
This map fis the meaning function induced by f. <

Definition 4.4. A Boole-type algebra B is a Boolean algebra if it satisfies the inequalities
of Table 2

We let P : Set — BA? denote the contravariant power set algebra functor. That is,
given a set X, we let PX denote the power set algebra of X, and for a map f: X — Y, the
homomorphism P f: PY — PX is provided by the map f~! = P f. <

4.2. Presentations of Boolean algebras. It has become a standard tool in mathematics
to define an algebraic structure by means of a presentation by generators and relations.
Usually, these definitions are given in the category-theoretic sense, and in particular do
not distinguish isomorphic structures. Our proof-theoretic analysis of the logic requires us
to be very precise here, and for this purpose we have developed a small piece of theory
on ‘concrete presentations’. We want to stress the fact that whereas we only talk about
Boolean algebras here, the results in this section in fact apply to a wide universal algebraic
setting.

Definition 4.5. A presentation is a pair (G; R) consisting of a set G of generators and a
set R C Lo(G) x Lo(G). Given such a relation R, let = C Lo(G) x Lo(G) be the least
congruence relation on the term algebra FG extending R such that the quotient FG /=, is
a Boolean algebra. We say that this quotient is the Boolean algebra presented by (G; R),
and denote it as B(G; R). Given a presentation (G; R), we let

NG:R) * 9 [g]- (4.2)
define a map 7g,g) : G — UB(G; R). <

It is straightforward to verify that 7).c.y is the quotient morphism from FG to B(G; R),
with kernel ker(7q.ry) = =r-

Relating this definition of presentations to the more usual one, first observe that a
‘relation’ is nothing but an equation over the set of generators (but note that generators
should not be seen as variables). Accordingly, given a presentation (G; R), a Boolean algebra
B, and an assignment f : G — UB, we say that a relation (s,t) € R is true in B under f,
notation: B, f = s ~ ¢, if f(s) = f(t). B is a model for R under f if B, f = s ~ ¢ for all
(s,t) € R. It is straightforward to verify that B(G; R) is a model for R under ng.ry. We
can now formulate the following proposition, of which we omit the (straightforward) proof.

Proposition 4.6. Let (G;R) be a presentation, and let B be a model for R under the
assignment f : G — UB. Then there is a unique homomorphism f': B(G;R) — B that
extends f in the sense that f'([g]) = f(g). In a diagram:

(G;R)

G

UB(G; R)

T b

UB
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The universal property of B(G; R) expressed by the above proposition is usually taken
as the definition of the Boolean algebra presented by a presentation.

In order to turn the class of presentations into a category we need to define a notion of
morphism between two presentations.

Definition 4.7. A presentation morphism from one presentation (G; R) to another (G’; R')
isamap f: G — Lo(G') satisfying f(s) =g f(t) for all s,t € Lo(G) such that (s,t) € R.
Given two presentation morphisms f : (G; R) — (G';R') and ¢ : (G'; R') — (G"; R"), we
define their composition go f : G — Lo(G") as the map given by

go f(x) :=7(f(x)),
and the identity presentation on (G; R) as the function idq.py : G — Lo(G) mapping a
generator x € GG to the term x € LyG. <

The verification that the above defines a category is routine. Category theorists will
note that identity and composition are those of the Kleisli category associated with the
monad L.

Definition 4.8. We will let Pres denote the category with presentations as objects and
presentation morphisms as arrows. <

We will now extend the construction B of a Boolean algebra out of a presentation to a
functor B : Pres — BA, and define a functor C' : BA — Pres in the opposite direction.

Definition 4.9. Given a presentation morphism f : (G; R) — (G'; R’), it is easy to see that
the map Bf : FG/=, — FG'/=,, given by

Bf: [slar = [f(9)c;ry
is well-defined.
Conversely, given a Boolean algebra B, define its canonical presentation as the pair
CB := (UB; Ag). Here UB is the underlying set of B, and Ap is the diagram of B, defined

as follows:
Ap = {(a,—b) | a,b € UB with a = ~2b}

U {(aAp) | {a} Up S, UB with a = A%}
U {(a, V) | {a} Up C, UB with a = e}
Given a homomorphism f : B — B’ between two Boolean algebras, we let

Cf:bw— f(b)
define a map C'f : UB — Lo(UB’). <
Proposition 4.10. B : Pres — BA and C : BA — Pres are functors.
Further on we will make good use of the following definition.
Definition 4.11. A presentation morphism f : (G; R) — (G'; R') is a pre-isomorphism if

there is a morphism g : (G'; R') — (G; R) such that §f(s) =g s and fg(s') = &, for all
terms s € LoG and s’ € LoG'. This g is called a pre-inverse of f. <

Proposition 4.12. Let f : (G;R) — (G'; R') be a presentation morphism. Then f is a
pre-isomorphism iff Bf is an isomorphism.
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Proof. For the direction from left to right, let f be a pre-isomorphism. We confine ourselves
to proving that Bf is injective. For this purpose assume that Bf([s ] ry) = Bf([tlc;r))-
Then by definition we have [fs] airy = | ft] @Ry, Or equivalently, fs =R ft From thls
it follows by the assumption that s =g g fs =R g ft =g t, and so it is immediate that
[slicsry = [tlicsmy-

Conversely, assume that Bf is an isomorphism between B(G; R) and B(G’; R'). Let
g: G' = LoG be such that g(z') € (Bf)~![2’] for every generator 2’ € G'. We claim that
Bg = (Bf)~!. To see this, note that it is straightforward to check that g(s") € (Bf)![s'];
from this it follows that (Bf)™'([s']ic.r) = (95" (c:R)-

In order to see that ¢ is a pre—inverse of f consider an arbitrary term s € LyG.
Clearly we have [s]ig,ry = (Bf)~ B f)[ l(a;ry, and so by definition and the above ob-
servation, we find [s]iq.ry = (Bf)~ [fs] G/;R/> = [gfs]<G;R>. This means that s = §fs,
as required. Conversely, let s’ be an arbitrary term in L£oG'. Then we have [s'] (GLRY =

(BABF) sy = BFIGs ) .my = [F35')rmry, or equivalently, s' =g fgs'. [

The functors B and C' are very close to forming an equivalence between the categories
Pres and BA. More precisely, we can formulate the following connections. Given a presenta-
tion (G; R), it is not hard to verify that the insertion of generators .y : G — UB(G; R)
defined in (4.2 is in fact a presentation morphism

neG;r) + (Gy R) = CB(G; R).
Conversely, given a Boolean algebra B, let idp denote the identity map on B := UB, and
recall that id B denotes the unique homomorphism id B : FUB — B extending idp. It is not

difficult to show that idg(t(b,...,bn)) = t8(b1,...,bs), and so we may think of id as an
evaluation map. We leave it for the reader to verify that for all s,¢t € FUB, we have

s=cptiff ’lT(ViB(S) = ZTZZB(t). (43)
From this it follows that the map eg : BCB — B given by putting, for any ¢(by,...,b,) €
Lo(UB):
B [t(b, ..., b)) — t2(b1, ..., by) (4.4)
is a well-defined homomorphism from BCB to B.
Theorem 4.13. The functors B and C form an adjoint pair B 4 C, with unit n : Idpes —
CB and counit € : BC' = Idga given by (£2]) and (&4]), respectively. Furthermore, each

arrow MRy ¢ (G; R) — CB(G; R) is a pre-isomorphism, and each arrow eg : BOB — B is
an isomorphism.

Proof. Let us start with showing that 1 : Idpes — CB is indeed a natural transformation.
That is, given an presentation morphism f : (G; R) — (G’; R') we have to show that the
following diagram commutes.

(G: R) 2 oB(G; R)
|
@ Ry XY@ RY
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For this purpose it suffices to check that the two compositions, C'B f o, gy (7) and nqr. gy ©
f(x) agree on an arbitrary generator z € GG. But this is immediate:

CBfongg(r) =CBflz] = [fx] = jigr)(fr) = e ry (f2) = (Nary © (@)
In order to prove that 7g,g) is a pre-isomorphism, let g : UB (G; R) — LoG be any map
such that g([s]) € [s] for any element [s] € UB(G