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Abstract. We define and study a term calculus implementing higher-order node replication.
It is used to specify two different (weak) evaluation strategies: call-by-name and fully lazy
call-by-need, that are shown to be observationally equivalent by using type theoretical
technical tools.

1. Introduction

Computation in the λ-calculus is based on higher-order substitution, a complex operation
being able to erase and copy terms during evaluation. Several formalisms have been proposed
to model higher-order substitution, going from explicit substitutions (ES) [ACCL90] (see a
survey in [Kes09]) and labeled systems [Lév78, BLM05] to pointer graphs [Wad71] or optimal
sharing graphs [Lam90]. The operational semantics used in each formalism to implement
copying (i.e. duplication) of terms is not the same.

Meanwhile, the Curry-Howard isomorphism [SU06] uncovers a deep connection between
logical systems and term calculi. Also in this framework, different ways to normalize
proofs in different logical systems correspond to different implementations of substitution.
Indeed, the process of full substitution is somehow analogous to the normalization process
in natural deduction, while linear substitution corresponds to cut elimination in Proof-
Nets [Acc18a]. Node-by-node replication is based on a Curry-Howard interpretation of deep
inference [GGP10, GHP13a]. Let us illustrate these different models using an example.

Indeed, suppose one wants to substitute all the free occurrences of some variable x in a
term t = x·x by the term u = y·(z·w) ( · denotes the application constructor). The variable

substituted at each reduction step is going to be highlighted in light blue :

( x · x )[x/u] → u·u (1.1)

( x ·x)[x/u] → (u· x )[x/u] → u·u (1.2)

( x · x )[x/y ·(w·z)] → ((y · x′ )·(y · x′ ))[x′/w·z] → u·u (1.3)

Full (or non-linear) substitution (1.1) is a one-shot substitution, replacing simultaneously
all the free occurrences of x in t by the whole term u. This notion is generally defined by
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induction on the structure of the term t. Linear (or partial) substitution (1.2) replaces one
free occurrence of x at a time. This notion is generally defined by induction on the number
of free occurrences of x in the term t. Node replication (1.3) is yet another approach which
replicates one term-constructor of u at a time, instead of replicating u as a whole. This
notion can be defined by induction on the structure of the term u. In the Curry-Howard
interpretation of deep inference, node replication is full: all occurences of x are replaced by
a node of u. A linear version of the node replication approach can be formally defined by
combining the last two models, although this does not correspond to any logical system we
are aware of:

( x ·x)[x/u] → ((y ·x′)· x )[x/y ·x′][x′/w·z] → ((y · x′ )·(y ·x′))[x′/w·z]

→ ((y ·(w·z))·(y · x′ ))[x′/w·z] → (y ·(w·z))·(y ·(w·z)) = u·u
(1.4)

In this sense, node replication is orthogonal to the full/linear aspect of classical substitu-
tion, since it can be implemented by either full or linear operations, as explained above.
Unsurprisingly, different notions of substitution give rise to different evaluation strate-
gies. Indeed, linear substitution is the common model in well-known abstract machines
for call-by-name and call-by-value (see e.g. [ABM14]), while (linear) node replication can
be used to implement fully lazy sharing [Wad71]. However, node replication, originally
introduced to implement optimal graph reduction in a graphical formalism, has only been
studied from a Curry-Howard perspective by means of a term language known as the atomic
λ-calculus [GHP13a].

The Atomic Lambda-Calculus. Logical aspects of intuistionistic deep inference are
captured by the atomic λ-calculus λa [GHP13a], where copying of terms proceeds atomically,
i.e. node by node, similar to the optimal graph reduction of Lamping [Lam90]. The
atomic λ-calculus is based on explicit control of resources, such as erasure and duplication.
Its operational semantics explicitly handles the structural constructors of weakening and
contraction, as in the calculus of resources λlxr [KL07, KR11]. As a result, understanding
the meta-properties of the term-calculus, in a higher-level, and its application to concrete
implementations of reduction strategies in programming languages, turn out to be quite
difficult. In this paper, we take one step back, by studying the paradigm of node replication
based on implicit, rather than explicit, weakening and contraction. This gives a new concise
formulation of node replication which is simple enough to model different programming
languages based on reduction strategies.

Call-by-Name, Call-by-Value, Call-by-Need. The theory of programming is usually
based on some notion of calculus, which can be often seen as a higher-order rewriting system.
A calculus definition results in general in a non-deterministic and unrestricted relation: a
term can be reduced in different ways, some of them being more efficent than others. When
implementing programming languages based on these theories, a specific (deterministic)
reduction strategy is necessary to provide a concrete mechanism to evaluate a program.

In the specific case of functional programming, the theory is given by the λ-calculus, giv-
ing rise to different reduction strategies used by different functional programming languages.

Call-by-name is used to implement programming languages in which arguments of
functions are first copied, then evaluated. This is frequently expensive, and may be improved
by call-by-value, in which arguments are evaluated first, then consumed. The difference can
be illustrated by the term t = ∆(II), where ∆ = λx.xx and I = λz.z: call-by-name first
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duplicates the argument II, so that its evaluation is also duplicated, while call-by-value first
reduces II to (the value) I, so that duplications of the argument do not cause any duplicated
evaluation. It is not always the best solution, though, because evaluating erasable arguments
is useless. Compare for instance (λx.z)(II) →β (λx.z)I →β z to (λx.z)(II) →β z.

Call-by-need, instead, combines the best of call-by-name and call-by-value: as in call-
by-name, erasable arguments are not evaluated at all, and as in call-by-value, reduction of
arguments occurs at most once. Furthermore, call-by-need implements a demand-driven
evaluation, in which erasable arguments are never needed (so they are not evaluated), and
non-erasable arguments are evaluated only if needed. Technically, some sharing mechanism
is necessary, for example by extending the λ-calculus with explicit substitutions/let con-
structs [AF97]. Then, any β-reduction step can be decomposed in at least two steps: one
creating an explicit (pending) substitution, and the other ones (linearly) substituting values.
Thus for example, (λx.xx)(II) reduces to (xx)[x/II], and the substitution argument is thus
evaluated in order to find a value before performing the linear substitution.

Even when adopting this wise evaluation scheme, there are still some unnecessary copies
of redexes: while only values (i.e. abstractions) are duplicated, they may contain redexes as
subterms, e.g. λz.z(II) whose subterm II is a redex. Duplication of such values might cause
redex duplications in weak (i.e. when evaluation is forbidden inside abstractions) call-by-need.
This happens in particular in the confluent variant of weak reduction in [LM99]:

(λx.xx)(λz.z(II)) → (xx)[x/λz.z(II)] → ((λz.z(II))x)[x/λz.z(II)]
→ (z(II))[z/x][x/λz.z(II)] → (x(II))[x/λz.z(II)]
↠ (II)(II) ↠ I

Full laziness. Alas, it is not possible to keep all values shared forever, typically when they
potentially contribute to the creation of a future β-reduction step. The key idea to gain
efficiency is then to keep the subterm II as a shared redex. Therefore, the value λz.z(II)
to be copied is split into two separate parts. The first one, called skeleton, contains the
minimal information preserving the bound structure of the value, i.e. the linked structure
between the binder and each of its bound variables. In our example, this is the term λz.zy,
where y is a fresh variable. The second one is a multiset of maximal free expressions (MFE),
representing all the shareable expressions (here only the term II). Only the skeleton is then
copied, while the problematic redex II remains shared:

(λx.xx)(λz.z(II)) → (xx)[x/λz.z(II)] → ((λz.zy)x)[x/λz.zy][y/II]

When the subterm II is needed ahead, it is first reduced inside the explicit substitution, as
it is usual in call-by-need, thus avoiding to compute the redex twice. This optimization is
called fully lazy sharing and is due to Wadsworth [Wad71].

As shown by Balabonski [Bal13], any weak strategy of the λ-calculus which is not using
sharing is undecidable, as for example the innermost needed reduction. However, in the
confluent weak setting evoked earlier [LM99], the fully lazy optimization is even optimal in
the sense of Lévy [Lév80]. This means that the strategy reaches the weak normal form in
the same number of β-steps as the shortest possible weak reduction sequence in the usual
λ-calculus without sharing. Thus, fully lazy sharing turns out to be a decidable optimal
strategy
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Quantitative Types. Intersection types were introduced as (denotational) models capturing
computational properties of functional programming in a broader sense [CD78, CDCV81,
BCDC83]. They extend simple types with a new constructor ∩, thus allowing to support
polymorphism in a finitary way: a program t is typable with σ ∩ τ if t is typable with both
types σ and τ independently. Originally, intersection enjoys associativity, commutativity,
and in particular idempotency (i.e. σ∩σ = σ). By changing to a non-idempotent intersection
constructor, one naturally comes to represent such a type by a multiset, also known as
multi-type. Idempotent as well as non-idempotent types allow for a characterization of
several operational properties of programs, e.g. termination of different evaluations strategies
can be characterized by typability in some appropriate intersection type system. There is
however a major difference between the two: while idempotent types provide qualitative
information, non-idempotent ones also provide quantitative knowledge. More precisely, it is
not only possible to prove that typability in one typing system characterizes termination
of some particular evaluation strategy, i.e. that a program is terminating if and only if it
is typable in the corresponding system, but also an upper bound or exact measure for the
time needed for its evaluation can be derived from its typing information (see [BKV17] for a
survey).

Contributions. The first contribution of this paper is a term calculus implementing (full)
node replication (Section 2) and internally encoding skeleton extraction (Subsection 4.2).
We study some of its main operational properties: termination of the substitution calculus,
confluence, and its relation with the λ-calculus.

Our second contribution is the use of the node replication paradigm to give an alternative
specification of two evaluation strategies usually described by means of full or linear substi-
tution: call-by-name (Subsection 4.1) and weak fully lazy reduction (Subsection 4.2), based
on the key notion of skeleton. The former can be related to (weak) head reduction, while
the latter is a fully lazy version of (weak) call-by-need. In contrast to other implementations
of fully lazy reduction relying on (external) meta-level definitions, our implementation is
based on formal operations internally defined over the syntax of the calculus.

Our implementation of fully lazy reduction is based on a class of restricted terms, called
U, which simplifies the formal reasoning. This restriction is not ad-hoc in the sense it is stable
through evaluations based on weak strategies, i.e. is an invariant property of evaluations
starting from pure λ-terms.

Furthermore, while it is known that call-by-name and call-by-need specified by means of
full/linear substitution are observationally equivalent [AF97], it was not clear at first whether
the same property would hold in our case. Our third contribution is a proof of this result
(Section 6) using semantical tools coming from proof theory –notably intersection types. This
proof technique [Kes16] considerably simplifies other approaches [AF97, MOW98] based on
syntactical tools. Moreover, the use of intersection types has another important consequence:
standard call-by-name and call-by-need turn out to be observationally equivalent to call-by-
name and call-by-need with node replication, as well as to the more semantical notion of
neededness (see [KRV18]).

Intersection types provide quantitative information about fully lazy evaluation so that
a fourth contribution of this work is a measure based on type derivations which turns out
to be an upper bound to the length of reduction sequences to normal forms in a fully lazy
implementation.
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More generally, our work bridges the gap between the Curry-Howard theoretical under-
standing of node replication and concrete implementations of fully lazy sharing. Related
works are presented in the concluding Section 7.

2. A Calculus for Node Replication

We now present the λR-calculus (as in Replication). From a syntactical point of view, we
add two new constructors to the λ-calculus: explicit substitutions and explicit distributors.
From an operational point of view, we provide a rewriting system on λR-terms together
with a notion of levels which will play a key role in the next sections.

2.1. Syntax. Given a countably infinite set of variables x, y, z, ..., we consider the following
grammars.

(Terms) t, u, r, s ::= x | λx.t | tu | t[x/u] | t[x//λy.u]
(Pure Terms) p, q ::= x | λx.p | pq
(Term Contexts) C ::= ♢ | λx.C | Ct | tC | C[x/t] | C[x//λy.u] | t[x/C] | t[x//λy.C]
(List Contexts) L ::= ♢ | L[x/u] | L[x//λy.u]

The set of terms is denoted by TR and the subset of pure terms is denoted by TP . We write
I for the identity function λx.x, and |t| for the number of symbols of the term t.

The construction [x/u] is an explicit substitution, which allows the sharing of the
subterm u. A term t[x/u] can be simply seen as a more concise notation for a let-binding
let x = u in t, where u is shared across the free occurences of the variable x in t. The
second construction [x//λy.u] is an explicit distributor (or simply distributor), which is
used specifically in the duplication of abstractions.

An explicit cut is denoted by [x ◁ u], which is either [x/u], or [x//u] when u is λy.u′,
typically to factorize some definitions and proofs where explicit substitutions and distributors
behave similarly. A characterization function ES(·) on explicit cuts distinguishes these two
cases: ES([x ◁ u]) = 1 if [x ◁ u] = [x/u], and 0 otherwise. The application constructor
associates to the left, i.e. t1t2 . . . tn means ((t1t2) . . . tn). Explicit cuts affects the rightmost
constructor, i.e. tu[x ◁ s] means t(u[x ◁ s]), otherwise we will write parenthesis like (tu)[x ◁ s].

Two notions of contexts are used. Term contexts C extend those of the λ-calculus
to explicit cuts. A term context is said to be pure if it does not contain any explicit cut.
List contexts L denote an arbitrary list of explicit cuts. They will be used in particular to
implement reduction at a distance (see Subsection 2.2).

Free and bound variables of terms are defined as expected, in particular fv(λx.t) :=
fv(t)\{x} and fv(t[x ◁ u]) := fv(t)\{x} ∪ fv(u). We write |t|x to denote the number of free
occurrences of the variable x in the term t. These notions are extended to contexts as
expected. In particular fv(♢) := ∅ and fv(L[x ◁ u]) := fv(L)\{x} ∪ fv(u). The domain of a
list context is defined as dom(♢) := ∅ and dom(L[x ◁ u]) := dom(L) ∪ {x}.

The standard notion of α-conversion [Bar85] on λ-terms is extended to the full set of
λR-terms as expected, and we systematically assume α-conversion whenever necessary to
avoid capture of free variables. We write t{x/u} for the meta-level substitution operation
simultaneously replacing all the free occurrences of the variable x in t by the term u.

The application of a context C to a term t, written C⟨t⟩, replaces the hole ♢ of C by
t. Thus, for instance, ♢⟨t⟩ = t and (λx.♢)⟨t⟩ = λx.t. This operation is not defined modulo
α-conversion, so that capture of variables eventually happens, such as in the second example
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if x ∈ fv(t). Thus, another kind of application of contexts to terms is also considered,
identified by double brackets, and is only defined if there is no capture of variables. For
instance, (λy.♢)⟨x⟩ = λy.x while (λx.♢)⟨⟨x⟩⟩ is undefined.

2.2. Operational semantics. Before presenting the dynamics of the calculus, let us
introduce some notations and definitions concerning reduction. Let →R be any reduction
relation. We write t →R t′ when (t, t′) ∈ →R, and ↠R (resp. ↠+

R) for the reflexive-transitive
(resp. transitive) closure of →R. A term t is said to be R-confluent iff t ↠R u and t ↠R s
implies there is t′ such that u ↠R t′ and s ↠R t′. The relation R is confluent iff every
term is R-confluent. A term t is said to be in R-normal form (written also R-nf) iff there
is no t′ such that t →R t′. A term t is said to be R-terminating or R-normalizing iff
there is no infinite R-sequence starting at t. The reduction R is said to be terminating iff
every term is R-terminating.

Explicit substitutions may block some expected meaningful (i.e. non-structural) reduc-
tions. For instance, β-reduction is blocked in (λx.t)[y/s]u because an explicit substitution
lies between the function and its argument. This situation does not happen in graphical
representations (e.g. [Gir96]), but it is typical in the sequential structure of term syntaxes.

There are at least two ways to handle this issue. The first one is based on struc-
tural/permutation rules, as in [GHP13a]. Therefore, in the previous example, the substi-
tution is first pushed outside the application node by means of a permutation rule, as
(λx.t)[y/s]u → ((λx.t)u)[y/s], so that β-reduction is finally unblocked. The second, less
elementary, possibility is given by an operational semantics at a distance [AK10, ABKL14],
where the β-redex can be fired by a rule like L⟨λx.t⟩u → L⟨t[x/u]⟩, where L is an arbitrary
list context. The distant paradigm is therefore used to gather meaningful and permutation
rules in only one reduction step. In λR, we combine these two complementary technical
tools. First, we consider the following permutation rules:

λy.t[x ◁ u] 7→π (λy.t)[x ◁ u] if y /∈ fv(u)
t[x ◁ u]s 7→π (ts)[x ◁ u] if x /∈ fv(s)
ts[x ◁ u] 7→π (ts)[x ◁ u] if x /∈ fv(t)
t[x ◁ u[y ◁ s]] 7→π t[x ◁ u][y ◁ s] if y /∈ fv(t)

The reduction relation →π is defined as the closure of the four rules 7→π under all contexts.

Example 2.1. Let t = x[x/w[z1//I](λy.y[z2/z3])]. Both inner explict cuts [z1//I] and [z2/z3]
are pushed outside the main explicit substitution, which results in a pure term followed by a
list of explicit cuts.

t →π x[x/w[z1//I](λy.y)[z2/z3]] →π x[x/(w[z1//I](λy.y))[z2/z3]]
→π x[x/w[z1//I](λy.y)][z2/z3] →π x[x/(w(λy.y))[z1//I]][z2/z3]
→π x[x/w(λy.y)][z1//I][z2/z3]

Permutations do not hold any computational content, only a structural one. Indeed, all
terms in the reduction sequence above could be naturally translated to the same graphical
notation. In order to highlight the computational content of node replication, we com-
bine distance and permutations within a single rewriting semantics. In addition, because
operational semantics at a distance is directly inspired from graph formalisms, there is
a better correspondence between the syntactic representation of terms and the graphical
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representations of their associated reduction notion [KL07, Acc18b]. The resulting reduction
relation λR is given by the closure under all contexts of the following rules:

L ⟨λx.t⟩u 7→dB L ⟨t[x/u]⟩
t[x/ L ⟨us⟩] 7→app L ⟨t{x/yz}[y/u][z/s]⟩ where y and z are fresh
t[x/ L ⟨λy.u⟩] 7→dist L ⟨t[x//λy.z[z/u]]⟩ where z is fresh
t[x//λy.u] 7→abs L ⟨t{x/λy.p}⟩ where u ↠π L ⟨p⟩ and y /∈ fv( L )
t[x/ L ⟨y⟩] 7→var L ⟨t{x/y}⟩

where the distant contexts are highlighted in green to make it easier to read. The λR-

calculus is defined by the set of terms TR equipped with this reduction relation. In the five
rules just above, a list context L is pushed outside the term. We assume in all these cases
that there is no capture of variables caused by this transformation, e.g. in rule dB this means
that dom(L) ∩ fv(u) = ∅. Apart from the distant Beta rule dB used to fire β-reduction, there
are four substitution rules used to copy nodes of pure terms pushing outside all the cuts
surrounding the node to be copied. Rule app copies one application node, while rule var

copies one variable node. To copy abstractions, both rules dist and abs are needed. Notice
that the (meta-level and capture-free) substitution is full, in the sense that it is performed
simultaneously on all ocurrences of the free variable x at the same time.

The reduction relation 7→sub is defined as 7→app ∪ 7→dist ∪ 7→abs ∪ 7→var, while the
substitution relation →sub (resp. distant Beta relation →dB) is defined as the closure of
7→sub (resp. 7→dB) under all contexts, and the reduction relation →R is the union of →sub

and →dB.

Example 2.2. This example illustrates the use of rules app and var to replicate application
and variables nodes, as well as rule dB to fire reduction. No distance is involved in this
example.

(λx.xx)(yz) →dB (xx)[x/yz] →app ((x1x2)(x1x2))[x1/y][x2/z]
→var (yx2)(yx2)[x2/z] →var (yz)(yz)

Example 2.3. Replication of abstractions is more involved, as illustrated below.

(λx.xx)(λy.(ww)y) →dB (xx)[x/λy.(ww)y] (2.1)

→dist (xx)[x//λy.z[z/(ww)y]] (2.2)

→app (xx)[x//λy.(z1z2)[z1/ww][z2/y]] (2.3)

→var (xx)[x//λy.(z1y)[z1/ww]] (2.4)

→app (xx)[x//λy.((z3z2)y) [z3/w][z2/w] ] (2.5)

→abs ((λy.(z3z2)y)(λy.(z3z2)y))[z3/w][z2/w] (2.6)

→var ((λy.(wz2)y)(λy.(wz2)y))[z2/w] (2.7)

→var (λy.(ww)y)(λy.(ww)y) (2.8)

The specificity in copying an abstraction λy.u is due to the (binding) relation between
the binder λy and all the free occurrences of y in its body u. Abstractions are thus copied
in two stages. The first one is implemented by the rule dist, which creates a distributor
in which a potentially replicable abstraction is placed, while moving its body inside a new
explicit substitution. Thus, in line (2.2), we create a distributor over the abstraction λy,
while (ww)y is placed inside an explicit substitution [z/(ww)y]. Notice that this substitution
is in the scope of abstraction λy. The distributor is marking the fact that the abstraction
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needs to be further duplicated. There are then two kinds of potentially replicable nodes
shared in the body of the corresponding abstraction.

(1) All free occurences of the variable bound by the main abstraction (here λy) must be
replicated by means of the rule var (2.4), so as to keep the correct binding structure.
This means that all the nodes leading to these occurences must also be duplicated: this
is why rule app is first used in (2.3).

(2) All nodes which are neither a free occurence of the bound variable nor in the path to
such a node can be arbitrarily copied inside the distributor (e.g. the internal application
node in line (2.5)), or replicated later (e.g. the two variable nodes w in (2.7) and (2.8)).

Components which are not replicated inside the distributor form a list of explicit cuts, which
can occur at different depths inside this distributor. Indeed, in (2.5), there are two explicit
substitutions [z3/w] and [z2/w]. The cuts can be gathered together into a list context, called
L in the definition of rule abs, which is pushed outside by using permutation rules, before
performing the substitution of the pure body containing all the bound occurrences of y (here
λy.(z1z2)y). This operation is in general hard to specify using only distance since the cuts
can appear at arbitrary depth in the distributor, and this is one of the reasons to introduce
the use of permutation rules in rule abs.

Other choices are possible, such as replicating all the nodes, or only the uppermost
application and the node y (corresponding to fully lazy duplication), as long as at least all
free occurences of y are duplicated.

Example 2.4. This last example showcases different reduction steps with distance, high-
lighted in green.

(λx.x) [z4/z5] (w[z1//I](λy.y[z2/z3])) →dB x[x/w[z1//I](λy.y[z2/z3])][z4/z5]

→app (x1x2)[x1/w [z1//I] ][x2/λy.y[z2/z3]][z4/z5]

→var (wx2)[z1//I][x2/λy.y[z2/z3]][z4/z5]

→dist (wx2)[z1//I][x2//λy.x[x/y [z2/z3] ]][z4/z5]

→var (wx2)[z1//I][x2//λy.y [z2/z3] ][z4/z5]

→abs (w(λy.y))[z1//I][z2/z3][z4/z5]

Notice that an R-step can be decomposed into some π-steps followed by a simpler step
not involving any list context. Indeed, t →R u could be simulated by t ↠π t′ →R′ u, where
→R′ is the closure under all contexts of the following set of rewriting rules:

(λx.t)u 7→dB′ t[x/u]
t[x/us] 7→app′ t{x/yz}[y/u][z/s]
t[x/λy.u] 7→dist′ t[x//λy.z[z/u]]
t[x//λy.p] 7→abs′ t{x/λy.p}
t[x/y] 7→var′ t{x/y}

For instance, step (2.6) in Example 2.3 can be decomposed as follows, where r = λy.(z3z2)y:

(xx)[x//r[z3/w][z2/w]] ↠π (xx)[x//r][z3/w][z2/w] →abs′ (rr)[z3/w][z2/w]

This decomposition will be useful in some of our proofs, but we prefer to integrate distance
inside the rules, as initially defined on page 7, to highlight the computational behavior and
execute permutations only when strictly necessary.
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2.3. Levels. This subsection introduces the syntactical notion of level and its associated
properties. Intuitively, the level of a variable in a term indicates the maximal depth (only
w.r.t. explicit substitutions and not w.r.t. explicit distributors) of its free occurrences.
However, in order to be sound with respect to the permutation rules, levels do not consider
depth in the usual sense only, but also across linked chains of explicit substitutions. For
instance, the level of z in both (xx)[x/y[y/z]] and (xx)[x/y][y/z] is the same. Levels will
play a key role in the next sections: they will be the combinatorial witnesses of the progress
of sub-substitution steps, necessary to prove termination of the sub-relation. They will also
be helpful to define a decreasing measure on typing derivations in Section 5. The level of a
variable z in a term t is defined by induction:

lvz(x) := 0

lvz(t1t2) := max(lvz(t1), lvz(t2))

lvz(λx.t) := lvz(t)

lvz(t[x ◁ u]) :=

{
lvz(t) if z /∈ fv(u)

max(lvz(t), lvx(t) + lvz(u) + ES([x ◁ u])) otherwise

In the two last cases, we can always suppose z ̸= x, because we work modulo α-conversion.
Notice that lvz(t) = 0 whenever z /∈ fv(t) or t is pure. We illustrate the concept of level by an
example. Consider t = x[x/z[y/w]][w/w′], then lvz(t) = 1, lvw′(t) = 3 and lvy(t) = 0 because
y /∈ fv(t). This notion is also extended to contexts as expected, i.e. lv♢(C) = lvz(C⟨z⟩),
where z is a fresh variable. Remark that for any variable x, lv♢(C) ≤ lvx(C⟨⟨x⟩⟩) and
lvx(C⟨⟨p⟩⟩) ≤ lvx(C⟨⟨x⟩⟩) for any p ∈ TP .

Lemma 2.5. Let x ̸= z, t ∈ TR and p ∈ TP :

(1) If z /∈ fv(p), then lvz(t{x/p}) = lvz(t).
(2) If z ∈ fv(p), then lvz(t{x/p}) = max(lvz(t), lvx(t)).

Proof. By induction on t (see appendix on page 44).

Lemma 2.6. Let t ∈ TR and w be any variable.

(1) If t0 →π t1, then lvw(t0) ≥ lvw(t1).
(2) If t0 →sub t1, then lvw(t0) ≥ lvw(t1).

Proof. By induction on the reduction relation (see appendix on page 46).

Notice that there are two cases when the level of a variable in a term may decrease:

• Moving an explicit cut out of another one with a permutation rule when the first cut is a void
cut, i.e. its domain does not bind any other variable. Thus e.g. if t = x[x/z[y/w]][w/w′] →π

x[x/z][y/w][w/w′] = u, then lvw′(t) = 3 > 2 = lvw′(u).
• Using rule 7→var. Thus e.g. if t = (xx)[x/y][y/z] →var (yy)[y/z] = u, then lvz(t) = 2 >
1 = lvz(u).

Hence, levels alone are not enough to prove termination of →sub. We thus define a
decreasing measure for →sub in which not only variables are indexed by a level, but also
constructors. For instance, in the term t[x/λy.yz], we can consider that the level of all the
constructors of λy.yz, including the abstraction and the application, have level lvx(t). This
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will ensure that the level of an abstraction will decrease when applying rule dist, as well as
the level of an application when applying rule app.

3. Operational Properties

We now prove three key properties of the λR-calculus: termination of the reduction system
→sub, relation between λR and the λ-calculus, and confluence of the reduction system →R.

Termination of →sub. Some (rather informal) arguments are provided in [GHP13a] to
justify termination of the substitution subrelation of their calculus. We expand these ideas
into an alternative full formal proof adapted to our case, which is based on a measure being
strictly decreasing w.r.t. →sub.

We consider a set O of objects of the form a(k, n) or b(k) (k, n ∈ N), which is equipped
with the following ordering >O (≥O denotes its reflexive closure):

a(k, n) >O a(k′, n′) if k > k′, or (k = k′ and n > n′) b(k) >O a(k′, n) if k ≥ k′

a(k, n) >O b(k′) if k > k′ b(k) >O b(k′) if k > k′

Notice that the symbols a and b are just formal expressions, i.e. O could be alternatively
(but less clearly) defined as (N× N) ⊎ N.

Lemma 3.1. The order >O on the set O is well-founded.

Proof. Let us consider the set N equipped with the standard order >N on natural numbers.
Let us also consider the set N∞ := N ⊎ {∞} equipped with the order >∞:=>N ∪{⟨∞, n⟩ |
n ∈ N}. Since >N and >∞ are both WF, then the lexicographic order induced by ⟨>N, >∞⟩
on N×N∞, written >LEX, is also WF. We show that >O is WF by projecting it into the WF
order >LEX, i.e. we define a projection function P such that s >O s′ implies P(s) >LEX P(s

′),
for any s, s′ ∈ O. Let us define P(s) = ⟨L(s),S(s)⟩, where L(a(k, n)) := k and L(b(k)) := k
while S(a(k, n)) := n and S(b(k)) := ∞. We reason by cases.

• s0 = a(k, n) >O a(k′, n′) = s1. Then ⟨L(s0),S(s0)⟩ = ⟨k, n⟩ >LEX ⟨k′, n′⟩ = ⟨L(s1),S(s1)⟩
holds by definition since either k > k′ or k = k′ and n > n′.

• s0 = b(k) >O b(k′) = s1. Then ⟨L(s0),S(s0)⟩ = ⟨k,∞⟩ >LEX ⟨k′,∞⟩ = ⟨L(s1),S(s1)⟩
holds by definition since k > k′.

• s0 = a(k, n) >O b(k′) = s1. Then ⟨L(s0),S(s0)⟩ = ⟨k, n⟩ >LEX ⟨k′,∞⟩ = ⟨L(s1),S(s1)⟩
holds by definition since k > k′.

• s0 = b(k) >O a(k′, n′) = s1. Then ⟨L(s0), S(s0)⟩ = ⟨k,∞⟩ >LEX ⟨k′, n′⟩ = ⟨L(s1),S(s1)⟩
holds by definition since either k > k′ or k = k′ and ∞ > n.

We write >O
MUL for the multiset extension of the order >O on O, which turns out to

be well-founded [BN98] by Lemma 3.1. Some operations on multisets are needed to build
the measure CL ( ) on terms. Indeed, let M be a multiset of objects in O. Multiset sum is
denoted ⊔. Furthermore:

(1) The a-elements (resp. b-elements) of the multiset M are all the objects of the form
a(k, n) (resp. b(k)) in M . We then may write M as Ma ⊔Mb, where Ma (resp. Mb)
contains all the a-elements (resp b-elements) of M .

(2) Given K ∈ N, we write M≤K (resp. M>K) for the multiset containing all o ∈ M such
that the first element of o is less than K (resp. strictly greater than K). We write M>K

a

for M>K ⊓Ma, where ⊓ denotes multiset intersection.
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(3) M can thus be decomposed in three disjoint multisets Mb,M
≤K
a and M>K

a , for every
K ∈ N.

(4) We also define the following operation on M :

p ·M := [a(p+ k, n) | a(k, n) ∈ M ] ⊔ [b(p+ k) | b(k) ∈ M ]

We are now ready to (inductively) define our cuts level measure CL (·) on terms.

CL (x) := [ ] CL (λx.t) := CL (t) CL (tu) := CL (t) ⊔ CL (u)

CL (t[x/u]) := CL (t) ⊔ ((lvx(t) + 1) · CL (u)) ⊔ [a(lvx(t) + 1, |u|)]
CL (t[x//u]) := CL (t) ⊔ (lvx(t) · CL (u)) ⊔ [b(lvx(t))]

Intuitively, the integer k in a(k, n) and b(k) counts the level of variables bound by explicit
substitutions, while n counts the size of terms to be substituted by an ES. Remark that for
every pure term p we have CL (p) = [ ].

Example 3.2. Consider the following reduction sequence:

t0 = (yy)[y/(λz.x)w] →app (y1y2)(y1y2)[y1/λz.x][y2/w] = t1

→var (y1w)(y1w)[y1/λz.x] = t2

→dist (y1w)(y1w)[y1//λz.x
′[x′/x]] = t3

→abs ((λz.x
′)w)((λz.x′)w)[x′/x] = t4

→var ((λz.x)w)((λz.x)w) = t5

We have CL (t0) = [a(1, 4)], CL (t1) = [a(1, 1), a(1, 2)], CL (t2) = [a(1, 2)], CL (t3) = [a(1, 1), b(0)],
CL (t4) = [a(1, 1)] and CL (t5) = [ ].

Fact 3.3. Some properties on multisets are straightforward:

• If M1 >
O
MUL M2, then M1 ⊔M >O

MUL M2 ⊔M .
• If M1 >

O
MUL M2, then k ·M1 >

O
MUL k ·M2 for any k ∈ N.

• k1 · k2 ·M = (k1 + k2) ·M .

Lemma 3.4. If CL (t) >O
MUL CL (u) and lvx(t) ≥ lvx(u) holds for every x ∈ dom(L), then

CL (L⟨t⟩) >O
MUL CL (L⟨u⟩).

Proof. By induction on L. The property is straightforward.

Lemma 3.5. Let t be a term, x a variable and p a pure term. Let K = lvx(t). Then there

is N ∈ N such that CL (t{x/p}) ⊑ CL (t)b ⊔ CL (t)>K
a ⊔ [a(k, n) | k ≤ K and n ≤ N ].

Proof. By induction on t (see appendix on page 52).

Lemma 3.6. Let t ∈ TR. Then t →π t′ implies CL (t) ≥O
MUL CL (t

′).
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Proof. By induction on the reduction t →π t′. We only detail here the case where t =
s[y/r[x/u]] 7→π s[y/r][x/u] = t′ at root, where x /∈ fv(t) (see appendix on page 53).

CL (t) = CL (s) ⊔ (lvy(s) + 1) · CL (r[x/u]) ⊔ [a(lvy(s) + 1, |r[x/u]|)]
= CL (s) ⊔ (lvy(s) + 1) · (CL (r) ⊔ (lvx(r) + 1) · CL (u) ⊔ [a(lvx(r) + 1, |u|)])
⊔ [a(lvy(s) + 1, |r[x/u]|)]

= CL (s) ⊔ (lvy(s) + 1) · CL (r) ⊔ (lvy(s) + lvx(r) + 2) · CL (u)
⊔ [a(lvy(s) + lvx(r) + 2, |u|), a(lvy(s) + 1, |r[x/u]|)]

= (CL (s) ⊔ (lvy(s) + 1) · CL (r) ⊔ [a(lvy(s) + 1, |r[x/u]|)])
⊔ (lvy(s) + lvx(r) + 2) · CL (u) ⊔ [a(lvy(s) + lvx(r) + 2, |u|)]

>O
MUL (CL (s) ⊔ (lvy(s) + 1) · CL (r) ⊔ [a(lvy(s) + 1, |r|)])
⊔ (lvx(s[y/r]) + 1) · CL (u) ⊔ [a(lvx(s[y/r]) + 1, |u|)]

= CL
(
t′
)

The >O
MUL inequation is justified by the following facts:

• |r[x/u]| > |r|.
• lvy(s) + lvx(r) + 2 = max(0, lvy(s) + lvx(r) + 1) + 1 = lvx(s[y/r]) + 1.

Lemma 3.7. Let t ∈ TR. Then t →sub t
′ implies CL (t) >O

MUL CL (t
′).

Proof. Let t = C⟨t0⟩ →sub C⟨t1⟩ = t′, where t0 →sub t1 is a reduction step at the root position.
We proceed by induction on C. We detail the base case which is C = ♢. In all such cases we
use Lemma 3.6 to push L outside, i.e. we can write t0 →sub t1 as t0 ↠π L⟨t′0⟩ →sub′ L⟨t′1⟩ = t1,
where t′0 →sub′ t

′
1 is a root step which does not push any list context outside. We then show

the property for root steps t′0 →sub′ t
′
1, and we conclude with Lemma 3.6 then Lemma 3.4

by CL (t0) ≥O
MUL CL (L⟨t′0⟩) >O

MUL CL (L⟨t′1⟩) = CL (t1) since lvx(t
′
0) ≥ lvx(t

′
1) holds for every

x ∈ dom(L) by Lemma 2.6. Let us analyse all the cases t′0 →sub′ t
′
1.

(1) If t′0 = t[x/us] →app t{x/yz}[y/u][z/s] = t′1, where y and z are fresh variables, then

CL
(
t′0
)
= CL (t) ⊔ (lvx(t) + 1) · CL (us) ⊔ [a(lvx(t) + 1, |us|)] and

CL
(
t′1
)
= CL (t{x/yz}[y/u]) ⊔ (lvz(t{x/yz}[y/u]) + 1) · CL (s)
⊔ [a(lvz(t{x/yz}[y/u]) + 1, |s|)]

= (CL (t{x/yz}) ⊔ (lvy(t{x/yz}) + 1) · CL (u) ⊔ [a(lvy(t{x/yz}) + 1, |u|)])
⊔ (lvz(t{x/yz}[y/u]) + 1) · CL (s) ⊔ [a(lvz(t{x/yz}[y/u]) + 1, |s|)]

= (CL (t{x/yz}) ⊔ (lvx(t) + 1) · CL (u) ⊔ [a(lvx(t) + 1, |u|)])
⊔ (lvx(t) + 1) · CL (s) ⊔ [a(lvx(t) + 1, |s|)]

= CL (t{x/yz}) ⊔ (lvx(t) + 1) · CL (us) ⊔ [a(lvx(t) + 1, |u|), a(lvx(t) + 1, |s|)]

By Lemma 3.5, CL (t{x/yz}) ⊑ CL (t)b ⊔ CL (t)>lvx(t)
a ⊔ [a(k, n) | k ≤ lvx(t), n ≤ N ] for

some N ∈ N. We also have that [a(lvx(t) + 1, |us|)] >O
MUL [a(lvx(t) + 1, |u|), a(lvx(t) +

1, |s|)] >O
MUL [a(k, n) | k ≤ lvx(t), n ≤ N ]. Moreover, CL (t) ⊒ CL (t)b ⊔ CL (t)>lvx(t)

a and
[a(lvx(t) + 1, |us|)] >O

MUL [a(k, n) | k ≤ lvx(t), n ≤ N ]. Thus we conclude CL (t′0) >O
MUL

CL (t′1).
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(2) If t′0 = t[x/λy.u] →dist t[x//λy.z[z/u]] = t′1, then

CL
(
t′0
)
= CL (t) ⊔ (lvx(t) + 1) · CL (u) ⊔ [a(lvx(t) + 1, |u|+ 1)] and

CL
(
t′1
)
= CL (t) ⊔ lvx(t) · CL (λy.z[z/u]) ⊔ [b(lvx(t))]

= CL (t) ⊔ lvx(t) · CL (z[z/u]) ⊔ [b(lvx(t))]

= CL (t) ⊔ lvx(t) · (CL (z) ⊔ (lvz(z) + 1) · CL (u) ⊔ [a(lvz(z) + 1, |u|)]) ⊔ [b(lvx(t))]

= CL (t) ⊔ lvx(t) · (1 · CL (u) ⊔ [a(1, |u|)]) ⊔ [b(lvx(t))]

= CL (t) ⊔ (lvx(t) + 1) · CL (u) ⊔ [a(lvx(t) + 1, |u|),b(lvx(t))]

CL (t′0) >
O
MUL CL (t

′
1) because the multisets are the same except for a(lvx(t) + 1, |u|) and

b(lvx(t)) on the right which are smaller than a(lvx(t) + 1, |u|+ 1) on the left.
(3) If t′0 = t[x//λy.u] →abs t{x/λy.u} = t′1, then we have CL (t′0) = CL (t) ⊔ [b(lvx(t))]. By

Lemma 3.5, CL (t′1) ⊑ CL (t)b⊔CL (t)
>lvx(t)⊔[a(k, n) | k ≤ lvx(t), n ≤ N ] for some N ∈ N.

Since [b(lvx(t))] >
O
MUL [a(k, n) | k ≤ lvx(t), n ≤ N ] and CL (t) ⊒ CL (t)b ⊔ CL (t)>lvx(t),

then we conclude CL (t′0) >
O
MUL CL (t

′
1).

(4) If t′0 = t[x/y] →var t{x/y} = t′1, we have CL (t′0) = CL (t) ⊔ [a(lvx(t) + 1, 1)]. By

Lemma 3.5, CL (t′1) ⊑ CL (t)b ⊔ CL (t)>lvx(t)
a ⊔ [a(k, n) | k ≤ lvx(t), n ≤ N ] for some

N ∈ N. Since [a(lvx(t) + 1, 1)] >O
MUL [a(k, n) | k ≤ lvx(t), n ≤ N ] and CL (t) ⊒

CL (t)b ⊔ CL (t)>lvx(t), we conclude CL (t′0) >
O
MUL CL (t

′
1)

The sequence of Example 3.2 illustrates this phenomenon: indeed, CL (ti) >
O
MUL CL (ti+1)

for 0 ≤ i < 5.

Corollary 3.8. The reduction relation →sub is terminating.

Simulations. We show the relation between λR and λ, as well as the atomic λ-calculus λa.
For that, we introduce a projection from TR to TP implementing the unfolding of all the
explicit cuts:

x↓ := x (λx.t)↓ := λx.t↓ (tu)↓ := t↓u↓ (t[x ◁ u])↓ := t↓{x/u↓}.

Thus e.g. x[x/z[y/w]][w/w′]↓ = x{x/z{y/w}}{w/w′} = z. The previous projection can be
extended from list contexts to substitutions as follows: ♢↓ := {} and (L[x◁u])↓ := L↓◦{x/u↓},
where ◦ denotes standard composition of substitutions.

Lemma 3.9. Let t ∈ TR. If t →R t′, then t↓ ↠β t′↓. In particular, if either t →π t′ or

t →sub t
′, then t↓ = t′↓.

Proof. By induction on the stated relations.

The relation →sub enjoys full composition on pure terms. Namely:

Lemma 3.10. For any p ∈ TP , t[x/p] ↠
+
sub t{x/p}.

Proof. By induction on p.

• If p = y, then t[x/y] →var t{x/y}.
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• If p = p1p2, then

t[x/p1p2] →app t{x/yz}[y/p1][z/p2]
↠+

i.h. t{x/yz}{y/p1}[z/p2] ↠
+
i.h. t{x/yz}{y/p1}{z/p2}

= t{x/p1p2}

• If p = λy.q, then t[x/λy.q] →abs t[x//λy.z[z/q]] ↠
+
i.h. t[x//λy.q] →dist t{x/λy.q}.

This property does not hold in general if p is not pure. Indeed, if t = xx, then
(xx)[x/y[y/z]] does not sub-reduce to (y[y/z])(y[y/z]), but to (yy)[y/z]. However, full
composition restricted to pure terms is sufficient to prove simulation of the λ-calculus.

Lemma 3.11 (Simulation of the λ-calculus). Let p0 ∈ TP . If p0 →β p1, then p0 →dB↠
+
sub p1.

Proof. Let p0 = C⟨t0⟩ →β C⟨t1⟩ = p1, where t0 = (λx.q)p 7→β q{x/p} = t1. By Lemma 3.10,

t0 →dB q[x/p] ↠
+
sub t1. The inductive cases for C are straightforward.

The previous results have an important consequence relating the atomic λ-calculus
and the λR-calculus. Indeed, it can be shown that reduction in the atomic λ-calculus is
captured by λa, and vice-versa. More precisely, the λR-calculus can be simulated into the
atomic λ-calculus by Lemma 3.9 and [GHP13a], while the converse holds by [GHP13a] and
Lemma 3.11.

A more structural correspondence between λR and λa could also be established. Indeed,
λR can be first refined into a (non-linear) calculus without distance, let say λR′, so that
permutation rules are integrated in the intermediate calculus as independent rules. Then a
structural relation can be established between λR and λR′ on one side, and λR′ and the
atomic λ-calculus on the other side (as for example done in [KL07] for the λ-calculus).

Confluence. By Corollary 3.8 the reduction relation →sub is terminating. It is then not
difficult to prove confluence of →sub by using the unfolding function ·↓.

Lemma 3.12. Let t ∈ TR. Then t is in sub-nf if and only if t is pure.

Proof. It is obvious that a pure term is sub-normal. Let us show the left-to-right implication
and consider a sub-normal term t. We reason by induction on t. Suppose that t is not pure,
so that t = C⟨t0[x ◁ u]⟩. If the explicit cut is an explicit substitution, then one of the rules
app, dist, var apply, which contradicts the hypothesis. Otherwise the cut is a distributor,
and u is an abstraction λy.u′, where u′ is in particular a sub-normal form. By the i.h. u′ is
pure so that the rule abs applies, which contradicts the hypothesis again.

Corollary 3.13. Let t ∈ TR. If t is in sub-nf, then t↓ = t.

Lemma 3.14. The reduction relation →sub is terminating and confluent.

Proof. Termination holds by Corollary 3.8. For confluence, suppose t ↠sub t1 and t ↠sub t2.
Let t1 ↠sub t′1 and t2 ↠sub t′2, where t′1 and t′2 are in sub-nf. Then by Corollary 3.13,

(t′i)
↓ = t′i for both i = 1, 2. By Lemma 3.9, (t′i)

↓ = t↓i = t↓ so that t′1 = t′2, closing the
diagram.

By termination of →sub any t ∈ TR has a sub-nf, and by confluence this sub-nf is unique.
By Lemma 3.9 and Corollary 3.13 one obtains:

Corollary 3.15. Let t ∈ TR. Then the unique sub-nf of t is t↓.
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Theorem 3.16. The reduction relation →R is confluent.

Proof. Let t ∈ TR such that t ↠R t1 and t ↠R t2. By simulation (Lemma 3.9), we have

t↓ ↠β t↓1 and t↓ ↠β t↓2. By Lemma 3.14, there exist t′1 (resp. t′2) the unique sub-nf of t1
(resp. t2). By Corollary 3.15 we have t′1 = t↓1 and t′2 = t↓2. Because →β is confluent, there is

u such that t↓1 ↠β u and t↓2 ↠β u, and by Lemma 3.11, t↓1 ↠R u and t↓2 ↠R u. The diagram

is then closed by t1 ↠sub t
′
1 = t↓1 ↠R u and t2 ↠sub t

′
2 = t↓2 ↠R u. Graphically,

t

t1 t↓ t2

t′1 = t↓1 t↓2 = t′2

u

R R
R

R
ββ

R

R

β β

R

4. Encoding Evaluation Strategies

In the theory of programming languages [Plo75], the notion of calculus is usually based on a
non-deterministic rewriting relation, while the deterministic notion of strategy is associated
to a concrete machinery being able to implement a specific evaluation procedure. Typical
evaluation strategies are call-by-name, call-by-value and call-by-need, to name a few.

Although the atomic λ-calculus was introduced as a technical tool to implement full
laziness, only its (non-deterministic) equational theory was studied. In this paper we
bridge the gap between the theoretical presentation of the atomic λ-calculus and concrete
specifications of evaluation strategies. Indeed, we use the λR-calculus to investigate two
concrete cases: a call-by-name strategy implementing weak head reduction, based on full
substitution, and the call-by-need fully lazy strategy, which uses linear substitution.

In this work, we choose to implement full laziness for pure terms, that is, for the usual
λ-calculus without cuts. Indeed, we see explicit cuts as a tool for a fully lazy implementation
of the λ-calculus. We thus keep in line with the definitions found in the literature. Defining
full laziness for terms with explicit cuts also brings technical difficulties, which might divert
from the main point: using node replication to implement a fully lazy strategy.

We then restrict the set of terms to a subset U, which simplifies the formal reasoning of
explicit cuts inside distributors. Indeed, distributors will all be of the shape [x//λy.LL⟨p⟩],
where p is a pure term containing the constructors that have been (symbolically) shared in
the distributor, and LL is a commutative list (defined below). We argue that this restriction
is natural in a weak implementation of the λ-calculus: it is true on pure terms and is
preserved through evaluation. We consider the following grammars.

(Linear Cut Values) T ::= λx.LL⟨p⟩ where y ∈ dom(LL) =⇒ |p|y = 1
(Commutative Lists) LL ::= ♢ | LL[x/p] | LL[x//T] where |LL|x = 0
(Values) v ::= λx.p
(Restricted Terms) U ::= x | v | U U | U[x/U] | U[x//T]
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A term t generated by any of the grammars G defined above is written t ∈ G. Thus e.g.
λx.(yz)[y/I][z/I] ∈ T but λx.(yy)[y/I] /∈ T, ♢[x/yz][x′/I] ∈ LL but ♢[x/yz][y/I] /∈ LL, and
(yz)[y//I] ∈ U but (yz)[y//λx.(yy)[y/I]] /∈ U.

The set T is stable by the relation →sub (Lemma 4.1), but U is clearly not stable under
the whole →R relation, where dB-reductions may occur under abstractions. For instance,
let t1 = (yz)[y//λx.(λy.yy)I] →dB (yz)[y//λx.(yy)[y/I]] = t2. Then t1 ∈ U but t2 /∈ U, since
|yy|y = 2. However, U is stable under both weak strategies to be defined: call-by-name
and call-by-need. We factorize the proofs by proving stability for a more general relation
→F, defined as the relation →R with dB-reductions forbidden under abstractions and inside
distributors.

Lemma 4.1. If t ∈ T and t →sub t
′, then t′ ∈ T.

Proof. We first show a more general statement, namely that t = LL0⟨p0⟩ with |p0|y = 1 for
every y ∈ dom(LL0), and t 7→sub t

′ imply t′ = LL1⟨p1⟩ with |p1|y = 1 for every y ∈ dom(LL1).
In the following rules var, app and dist, there is no L context inside the explicit substitutions
because lists in LL only contain pure terms by definition.

• t = u[x/z] 7→var u{x/z} = t′. This is straightforward.
• t = LL⟨p⟩[x/q1q2] 7→app LL⟨p{x/x1x2}⟩[x1/q1][x2/q2] = t′. Freshness of both x1 and x2
implies |p{x/x1x2}|x1 = |p{x/x1x2}|x2 = |p|x = 1, and |q1|x2 = 0.

• t = LL⟨p⟩[x/λz.p′] 7→dist LL⟨p⟩[x//λz.w[w/p′]] = t′. By hypothesis |p|x = 1, |LL|x = 0 and
λz.p′ is pure. Then, λz.w[w/p′] ∈ T because p′ is pure and |w|w = 1.

• t = LL⟨p⟩[x//λz.LL′⟨p′⟩] 7→abs LL
′⟨LL⟨p⟩{x/λz.p′}⟩ = t′. By hypothesis λz.LL′⟨p′⟩ ∈ T thus

λz.p′ and p{x/λz.p′} are pure. We conclude since |LL|x = 0 by hypothesis.

Now we can lift the property to T by observing that we necessarily have t = λx.u →sub λx.u
′,

where u →sub u
′. Then we conclude by the previous point.

Lemma 4.2. If t ∈ U and t →F t
′, then t′ ∈ U.

Proof. Straightforward by induction on the reduction relation.

4.1. Call-by-name. The call-by-name (CBN) strategy →name (Figure 1) is defined on the
set of terms U as the union of the following relations →ndB and →nsub. The strategy is weak
as there is no reduction under abstractions. It is also worth noticing (as a particular case of
Lemma 4.2) that t ∈ U and t →name t

′ implies t′ ∈ U.

t 7→dB t
′

t →ndB t
′ (db)

t →ndB t
′

tu →ndB t
′u

(appdb)
t →ndB t

′

t[x ◁ u] →ndB t
′[x ◁ u]

(subdb)

t 7→sub t
′

t →nsub t
′ (s)

t →nsub t
′

tu →nsub t
′u

(apps)
t →nsub t

′

u[x//λy.t] →nsub u[x//λy.t
′]

(subs)

Figure 1: Call-by-Name Strategy



Vol. 20:1 NODE REPLICATION: THEORY AND PRACTICE 5:17

Example 4.3. This example follows a call-by-name evaluation. The name of the contextual
rule is written in the superscript of the arrow symbol, and the redex is underlined.

(λx1.I(x1I))(λy.(II)y) →db (I(x1I))[x1/λy.(II)y]

→s (I(x1I))[x1//λy.z[z/(II)y]]

→subs (I(x1I))[x1//λy.(z1z2)[z1/II][z2/y]]

→subs (I(x1I))[x1//λy.(z1y)[z1/II]]

→s (I((λy.z1y)I))[z1/II]

→subdb x2[x2/(λy.z1y)I][z1/II]
↠+ ((λy.z1y)I)[z1/II]
↠+ λy.(II)y

The strategy →name does not impose duplication of all nodes in the body of an abstraction
inside the distributor: only the skeleton of the abstraction λy.(II)y is replicated. But the
strategy forbids dB-reductions inside explicit cuts, so that there is no benefit gained by keeping
shared terms such as II. Indeed, the main idea behind full laziness is that shared terms are
only reduced once. The CBN strategy, on the contrary, duplicates arguments before reducing
them. The absence of optimization is reflected by the fact that the strategy, although not
deterministic, enjoys the remarkable diamond property, guaranteeing in particular that all
reduction sequences starting from t and ending in a normal form have the same length.

Proposition 4.4 (Diamond). The CBN strategy enjoys the diamond property, i.e. for any
terms t, u, s ∈ U such that t →name u, t →name s and u ̸= s, there exists t′ such that u →name t

′

and s →name t
′.

Proof. By separate inductions on the reduction relations ⟨→ndB,→ndB⟩, ⟨→nsub,→nsub⟩ and
⟨→ndB,→nsub⟩ (see appendix on page 54).

It is worth noticing that call-by-name in the λ-calculus can be simulated by call-by-name
in λR. The former can be defined by weak-head reduction, denoted →whr, and generated by
the following rules:

(λy.t)u →whr t{x/u}
t →whr t

′

tu →whr t
′u

There is in particular a one-to-one relation between β-steps and ndB-steps.

Lemma 4.5 (Relating Call-by-Name Strategies).

• Let p0 ∈ TP . If p0 →whr p1, then p0 →ndB↠
+
nsub p1 (thus p0 ↠+

name p1).

• Let t0 ∈ U. If t0 →ndB t1, then t↓0 →whr t
↓
1. If t0 →nsub t1, then t↓0 = t↓1.

Proof.

• By induction on →whr.
– Let p0 = (λx.p)q →β p{x/q} = p1. Then (λx.p)q →ndB p[x/q] and we need to verify

that p[x/q] ↠+
nsub p{x/q}. The proof of t[x/q] ↠+

nsub t{x/q} for any t ∈ U and pure
term q is by induction on q:
∗ If q = y then t[x/y] →nsub t{x/y}.
∗ If q = q0q1 then t[x/q] →nsub t{x/z0z1}[z0/q0][z1/q1]. By the i.h. we have

t{x/z0z1}[z0/q0][z1/q1] ↠+
nsub (t{x/z0z1}[z0/q0]){z1/q1} = t{x/z0q1}[z0/q0]

and
t{x/z0q1}[z0/q0] ↠+

nsub t{x/z0q1}{z0/q0} = t{x/q0q1}
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Therefore, t[x/q0q1] ↠
+
nsub t{x/q0q1}.

∗ If q = λy.q′ then t[x/q] →nsub t[x//λy.z[z/q
′]]. By the i.h. we have that z[z/q′] ↠+

nsub

z{z/q′} = q′ thus t[x//λy.z[z/q′]] ↠+
nsub t[x//λy.q′] →nsub t{x/λy.q′}. Therefore,

t[x/λy.q′] ↠+
nsub t{x/λy.q′}.

– Let p0 = pq →whr p
′q = p1 where p →whr p

′. By the i.h. we have that p ↠+
name p

′ then,
by (appdb) and (apps), p0 = pq ↠+

name p
′q = p1.

• By case analysis on →name. If t0 →nsub t1 then t↓0 = t↓1 by Lemma 3.9. If t0 →ndB t1 then
we prove the property by induction on →ndB.

– Let t0 = (λx.t)u →ndB t[x/u] = t1. Then t↓0 = (λx.t↓)u↓ →β t↓{x/u↓} = t↓1. Note that

both t↓ and u↓ are pure terms.
– Let t0 = tu →ndB t′u = t1 where t →ndB t′. Then t↓ →whr t′↓ by the i.h., thus

t↓0 = t↓u↓ →whr t
′↓u↓ = t↓1.

– Let t0 = t[x ◁ u] →ndB t
′[x ◁ u] = t1 where t →ndB t

′. Then t↓ →whr t
′↓ by the i.h., thus

t↓0 = t↓{x/u↓} →whr t′↓{x/u↓} = t↓1. Note that the result depends on the closure of
→whr by (implicit) substitutions, which has a straightforward proof by induction on
(pure) term t↓, using substitution composition.

The following grammar Na is meant to characterize normal forms with respect to the
→name strategy:

Na ::= λx.p | Na
Na ::= x | Na t

Notice that all normal forms are pure terms: we unfold all explicit substitutions with
sub-steps.

Lemma 4.6. Let t ∈ U. Then t ∈ Na iff t is in name-nf.

Proof. The left-to-right implication is straightforward. The right-to-left implication proof is
by induction on U.

• t = x. By definition, t ∈ Na.
• t = λx.p. Then t ∈ Na by definition.
• t = t′u, where t′, u ∈ U. By definition of →name, t in name-nf implies t′ is also in name-nf
and t′ is neither an explicit cut nor an abstraction. Thus t′ ∈ Na by the i.h. and we can
conclude t ∈ Na.

• t = t′[x/u], where t′, u ∈ U. This is not possible because there is always an applicable
structural rule which would contradict t to be in name-nf.

• t = t′[x//λy.u], where λy.u = λy.LL⟨p⟩ ∈ T. Then either we can apply a structural rule on
u, or u is pure (i.e. LL = ♢) and we can apply rule →abs. In both cases we would have a
contradiction with t in name-nf.

4.2. Call-by-need. We now specify a deterministic strategy flneed implementing demand-
driven computations and only linearly replicating nodes of values (i.e. pure abstractions).
Given a value λx.p, only the piece of structure containing the paths between the binder
λx and all the free occurrences of x in p, named skeleton, will be copied. All the other
components of the abstraction will remain shared, thus avoiding some future duplications of
redexes, as explained in the introduction. By copying only the smallest possible substructure
of the abstraction, the strategy flneed implements an optimization of call-by-need called
fully lazy sharing [Wad71]. First, we formally define the key notions we are going to use.
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A free expression [Jon87, Bal12a] of a pure term p is a strict subterm q of p such that
every free occurrence of a variable in q is also a free occurrence of the variable in p. A free
expression of p is maximal if it is not a subterm of another free expression of p. From
now on, we will consider the (ordered) list of all maximal free expressions (MFE) of a term.
Thus e.g. the MFEs of λy.p, where p = (Iy)I(λz.zyw), is given by the list [I; I;w].

An n-ary (pure) context (n ≥ 0) is a (pure) context with n holes ♢. A skeleton is an
n-ary pure context where the maximal free expressions w.r.t. a variable set θ are replaced
with holes. We introduce two different yet equivalent notions of skeleton, together with a
corresponding operation of skeleton extraction: we argue that they entail respectively a
big-step and a small-step semantics. More precisely, in the big-step semantics the skeleton
extraction process can be seen as a meta-operator, defined by operations that are external to
the calculus itself, as in [AF97], while in the small-step semantics the process of extraction
is defined by an explicit reduction relation encoded in the calculus itself.

A first definition of skeleton. The first notion of skeleton runs as follows. Given any set
of variables θ, the θ-skeleton of a pure term is an n-ary pure (i.e. without explicit cuts)
context defined as {{p}}θ := ♢ if θ ∩ fv(p) = ∅; otherwise:

{{x}}θ := x {{λx.p}}θ := λx.{{p}}θ∪{x} {{p1p2}}θ := {{p1}}θ{{p2}}θ

Thus e.g. if p = (Iy)I(λz.zyw) as above, then {{p}}{y} = (♢y)♢(λz.zy♢).
Function {{ }}θ is (implicitly) intended to give a context whose holes correspond to the

MFE’s that are abstracted out. Splitting a term into a skeleton and a multiset of MFEs is
at the core of full laziness. This can naturally be implemented in the node replication model,
as observed in [GHP13a]. Here, we give two different (alternative) operational semantics to
achieve it. The first one (Figure 2), written ⇓θ, uses big-step semantics and implements the
first definition of skeleton introduced above.

x fresh

p ⇓θ x[x/p]
when fv(p) ∩ θ = ∅; otherwise:

x ⇓θ x

p ⇓θ∪{x} L⟨p′⟩
λx.p ⇓θ L⟨λx.p′⟩

p ⇓θ L1⟨p′⟩ q ⇓θ L2⟨q′⟩
pq ⇓θ L2⟨L1⟨p′q′⟩⟩

Figure 2: Relation ⇓θ: Splitting Skeleton and MFEs in Big-Step Semantics

Each of the rules in Figure 2 corresponds to a different case in the first definition of
θ-skeleton. In the first rule, since there is no free variable of p in θ, p is thus an MFE
kept shared in an explicit substitution. The other three rules correspond to each possible
constructor, where all the explicit cuts created during the inductive cases are pushed out.

Example 4.7. Let y, z /∈ fv(t), so that t is the MFE of λy.x[x/λz.(yt)z]. Then,

y ⇓{y,z} y t ⇓{y,z} x[x/t]

yt ⇓{y,z} (yx)[x/t] z ⇓{y,z} z

(yt)z ⇓{y,z} ((yx)z)[x/t]

λz.(yt)z ⇓{y} (λz.(yx)z)[x/t]



5:20 D. Kesner, L. Peyrot, and D. Ventura Vol. 20:1

Lemma 4.8 (Correctness of ⇓θ). If p ∈ TP , then ∃n ≥ 0 s.t. p ⇓θ {{p}}θ⟨x1, . . . , xn⟩[xi/ti]i≤n,
where {{p}}θ⟨t1, . . . , tn⟩ = p, and (xi)1≤i≤n are fresh pairwise distinct variables. Moreover,
fv(ti) ∩ θ = ∅ for all 1 ≤ i ≤ n.

Proof. If fv(p) ∩ θ = ∅, then p ⇓θ x1[x1/p] and {{p}}θ = ♢, so that {{p}}θ⟨p⟩ = p trivially
holds. Otherwise, we reason by induction on p:

• If p = x, then {{x}}θ = x, so the property holds for n = 0 because x ⇓θ x.
• If p = p1p2, then {{p}}θ = {{p1}}θ{{p2}}θ. By the i.h. we have

p1 ⇓θ {{p1}}θ⟨x1, . . . , xk⟩[xi/ti]i≤k and p2 ⇓θ {{p2}}θ⟨xk+1, . . . , xn⟩[xi/ti]k<i≤n, where

{{p1}}θ⟨t1, . . . , tk⟩ = p1 and {{p2}}θ⟨tk+1, . . . , tn⟩ = p2.

Hence:

p1p2 ⇓θ ({{p1}}θ⟨x1, . . . , xk⟩{{p2}}θ⟨xk+1, . . . , xn⟩)[xi/ti]i≤k[xi/ti]k<i≤n

= {{p}}θ⟨x1, . . . , xn⟩[xi/ti]i≤n

• If p = λx.p′,then {{p}}θ = λx.{{p′}}θ∪{x}. By the i.h. we have

p′ ⇓θ∪{x} {{p′}}θ∪{x}⟨x1, . . . , xn⟩[xi/ti]i≤n.

Moreover, x /∈
⋃

i≤n fv(ti) by definition of ⇓ and every xi is different from x. Hence:

λx.p′ ⇓θ (λx.{{p′}}θ∪{x}⟨x1, . . . , xn⟩)[xi/ti]i≤n = {{λx.p′}}θ⟨x1, . . . , xn⟩[xi/ti]i≤n.

The correcteness lemma states in particular that p ⇓θ L⟨p′⟩ implies p′ is pure and
fv(L) ∩ θ = ∅.

An alternative definition of skeleton. An alternative definition of θ-skeleton can be
given by removing the maximal free expressions from a term. Indeed, the θ-skeleton
{{{p}}}θ of a pure term p, where θ = {x1 . . . xn}, is the n-ary pure context {{{p}}}θ such that
{{{p}}}θ⟨q1, . . . , qn⟩ = p, for [q1; . . . ; qn] the maximal free expressions of λx1. . . . λxn.p

1. It is
easy to show that both notions of skeleton are equivalent, i.e. {{p}}θ = {{{p}}}θ. Thus, for
the same p as before, λy.{{{p}}}{y} = λy.(♢y)♢(λz.zy♢).

The second strategy to split a term into a skeleton and its MFEs is the small-step
strategy →st on the set of terms T (Figure 3), which is indeed a subset of the reduction
relation →R. It implements the second definition of skeleton we have introduced. The
relation →st makes use of four basic rules which are parameterized by the variable y upon
which the skeleton is built, written 7→y. There are also two contextual (inductive) rules.

Example 4.9. Let λy.x[x/λz.(yt)z] be as in Example 4.7.

λy.x[x/λz.(yt)z] →y
dist λy.x[x//λz.w[w/(yt)z]] →z

app λy.x[x//λz.(w1w2)[w1/yt][w2/z]]

→z
var λy.x[x//λz.(w1z) [w1/yt] ] →y

abs λy.(λz.w1z)[w1/yt]

→y
app λy.(λz.(x1x2)z)[x1/y][x2/t] →y

var λy.(λz.(yx2)z)[x2/t]

Notice that the focused variable changes from y to z, then back to y. This is because
→st constructs the innermost skeletons first. The small-step approach allows to parametrize
the reduction relation by only one variable at a time, instead of a set.

Lemma 4.10. If t ∈ T and t →st t
′, then t′ ∈ T.

1The order of the abstractions is irrelevant.
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t[x/y] 7→y
var t{x/y}

y ∈ fv(p1p2)

t[x/p1p2] 7→y
app t{x/x1x2}[x1/p1][x2/p2]

y ∈ fv(λz.p)

t[x/λz.p] 7→y
dist t[x//λz.w[w/p]]

y ∈ fv(λz.LL⟨p⟩) z /∈ fv(LL)

t[x//λz.LL⟨p⟩] 7→y
abs LL⟨t{x/λz.p}⟩

t 7→y t′ y /∈ fv(LL)

λy.LL⟨t⟩ →st λy.LL⟨t′⟩
(ctx1)

t →st t
′ y ∈ fv(t) y /∈ fv(LL)

λy.LL⟨u[x//t]⟩ →st λy.LL⟨u[x//t′]⟩
(ctx2)

Figure 3: Relation →st: Splitting Skeleton and MFEs in Small-Step Semantics

Proof. For the root 7→y rules, we first show that if t = LL0⟨p0⟩ with |p0|z = 1 for all
z ∈ dom(LL0), and t 7→y t′, then t′ = LL1⟨p1⟩ with |p1|z = 1 for all z ∈ dom(LL1).

• If t 7→y
var t′, this is straightforward.

• If t = LL⟨p⟩[x/q1q2] 7→y
app LL⟨p⟩{x/x1x2}[x1/q1][x2/q2] = t′, then, since x /∈ fv(LL), we

have LL{x/x1x2} = LL. Moreover, freshness of x1, x2 implies |LL⟨p′⟩|x1 = |LL⟨p′⟩|x2 =
|LL⟨p⟩|x = 1, where p′ = p{x/x1x2}, and |q1|x2 = 0.

• If t = u[x/λx′.p] 7→y
dist u[x//λx

′.w[w/p]] = t′, this is true by hypothesis, where in particular
|u|x = 1, and λx′.w[w/p] ∈ T because p is pure and |w|w = 1.

• If t = LL1⟨p1⟩[x//λz.LL2⟨p2⟩] 7→y
abs LL2⟨LL1⟨p1⟩{x/λz.p2}⟩ = t′. By hypothesis |p1|x = 1

and |LL1|x = 0, so that t′ = LL2⟨LL1⟨p1{x/λz.p2}⟩⟩ = LL′1⟨p′⟩, since for all z1 ∈ dom(LL1)
and all z2 ∈ dom(LL2), |p1|z1 = |p2|z2 = 1 and, by α-conversion, |p1|z2 = |p2|z1 = 0 so that
|p1{x/λz.p2}|z′ = 1 for any z′ ∈ dom(LL′).

Then, for the contextual rules, we show by induction on t →sub t′: if t ∈ T and t →sub t′,
then t′ ∈ T.

• In the case of (ctx1), we have t = λy.LL⟨t0⟩ →sub λy.LL⟨t1⟩. By the hypothesis that t ∈ T

follows t0 = LL0⟨p0⟩. By the previous case analysis, t1 = LL1⟨p1⟩. Therefore t′ ∈ T.
• In the case of (ctx2), we have t = λy.LL⟨u[x//t0]⟩ →sub λy.LL⟨u[x//t1]⟩. By the hypothesis
that t ∈ T follows t0 ∈ T. By induction hypothesis, t1 ∈ T. Therefore t′ ∈ T.

Lemma 4.11. The reduction relation →st is confluent and terminating.

Proof. To show termination it is sufficient to notice that t →st t′ implies t →sub t′. Since
→sub is terminating (Corollary 3.8) then we conclude termination of →st. Next, we show
that →st is confluent by observing that it is deterministic. Indeed,

• The base rules 7→y only reduce the outermost cut and they are all distinct: there is one
rule for an outermost distributor, and three rules for outermost explicit substitutions, one
for each possible form (variable, application, abstraction).

• Because of the condition y /∈ fv(LL) in rules (ctx1) and (ctx2) the base rules are always
applied from right to left inside an abstraction.

• Moreover, rule (ctx2) does not overlap with any other rule, in particular with 7→y
abs.

Indeed, for a term u[x//λz.LL⟨p⟩], there are only two possibilites. Either z is a free variable
of LL, and we cannot apply 7→y

abs, or z is not a free variable of LL, and we can apply 7→y
abs.

In the latter, there is in particular no cut of LL for which z is free. Therefore, we cannot
apply any base-rule recursively inside the distributor. So, we cannot apply rule (ctx2).
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Since rule application is deterministic, then there is no possible diverging diagram, and thus
confluence is trivial.

Thus, from now on, we denote by ⇓st the function relating a term of T to its unique
st-nf. For instance, from Example 4.9 we deduce λy.x[x/λz.(yt)z] ⇓st λy.(λz.(yx2)z)[x2/t].

Lemma 4.12. If p is a pure term and LL a (commutative) list context where y /∈ fv(LL),
then there exists n and an n-ary pure context c such that

λy.LL⟨t[z/p]⟩ ↠st λy.LL⟨t{z/c⟨x1, . . . , xn⟩}[xi/qi]1≤i≤n⟩

where the variables x1, . . . , xn are fresh pairwise distinct and [q1; . . . ; qn] are the MFE of
λy.p such that c⟨q1, . . . , qn⟩ = p.

Proof. If y /∈ fv(p), then p is the MFE of λy.p and the property is satisfied by the empty
reduction, with n = 1, c = ♢, and q1 = p. Otherwise, we reason by induction on p.

• If p = y, then λy.p has no MFE and λy.LL⟨t[z/y]⟩ →y
var λy.LL⟨t{z/y}⟩. Then the property

holds for n = 0 and the 0-ary context y.
• If p = p1p2, then by the i.h. on p2 and on p1 we have:

λy.LL⟨t[z/p1p2]⟩ →y
app λy.LL⟨t{z/z1z2}[z1/p1][z2/p2]⟩

↠st λy.LL⟨t{z/z1c2⟨xk+1, . . . , xn⟩}[z1/p1][xi/qi]k<i≤n⟩
↠st λy.LL⟨t{z/c1⟨x1, . . . , xk⟩c2⟨xk+1, . . . , xn⟩}[xi/qi]1≤i≤k[xi/qi]k<i≤n⟩
= λy.LL⟨t{z/c⟨x1, . . . , xn⟩}[xi/qi]1≤i≤n⟩

where c⟨x1, . . . , xn⟩ = c1⟨x1, . . . , xk⟩c2⟨xk+1, . . . , xn⟩, and the variables x1, . . . , xn are
chosen to be pairwise distinct. To apply the i.h. on p1, we take LL to be LL⟨♢[xi/qi]k<i≤n⟩,
which verifies the hypothesis of the statement since by definition of the MFEs, y /∈
∪k<i≤n fv(qi). We can conclude since the maximal free expressions of λy.p1p2 can be
computed by considering the MFEs of λy.p1 and λy.p2 respectively, i.e. [q1; . . . ; qn].

• If p = λx.p′, then by the i.h. on p′ we have: λx.z′[z′/p′] ↠st λx.c
′⟨x1, . . . , xn⟩[xi/qi]1≤i≤n,

where the terms [q1; . . . ; qn] are the MFEs of λx.p′, so in particular x /∈ ∪1≤i≤n fv(qi). We
can then apply the i.h. on qn, . . . , q1, thus for t0 = λy.LL⟨t[z/λx.p′]⟩ we have:

t0 →y
dist λy.LL⟨t[z//λx.z′[z′/p′]]⟩

↠st λy.LL⟨t[z//λx.c′⟨x1, . . . , xn⟩[xi/qi]1≤i≤n]⟩
→y

abs λy.LL⟨t{z/λx.c′⟨x1, . . . , xn⟩}[xi/qi]1≤i≤n⟩
↠st λy.LL⟨t{z/λx.c′⟨x1, . . . , xn−1, cn⟨x1n, . . . , xmn

n ⟩⟩}[xi/qi]1≤i<n[x
j
n/q

j
n]1≤j≤mn⟩

↠st λy.LL⟨t{z/λx.c′⟨c1⟨x11, . . . , x
m1
1 ⟩, . . . , cn⟨x1n, . . . , xmn

n ⟩⟩}[xji/q
j
n]1≤j≤mi,1≤i≤n⟩

= λy.LL⟨t{z/c⟨x11, . . . , xmn
n ⟩}[xji/q

j
n]1≤j≤mi,1≤i≤n⟩

where c⟨x11, . . . , xmn
n ⟩ = λx.c′⟨c1⟨x11, . . . , x

m1
1 ⟩, . . . , cn⟨x1n, . . . , xmn

n ⟩⟩ and the variables x11
to xmn

n are taken pairwise distinct. To apply the i.h. on qk (1 ≤ k ≤ n), we take the linear

context to be LL⟨♢[xji/q
j
i ]1≤j≤mi,k<i≤n⟩, which verifies the hypothesis of the statement

since by definition of the MFEs, y /∈ ∪1≤j≤mi,k<i≤n fv(q
j
i ). By the i.h. [q1i ; . . . ; q

mi
i ] are the

MFEs of λy.qi for each i. Therefore, since [q1; . . . ; qn] are the MFEs of λx.p′, the terms
[q11; . . . ; q

mn
n ] are also the MFEs of λy.λx.p′.
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Corollary 4.13 (Correctness of →st). Let p ∈ TP and [q1; . . . ; qn] be the MFEs of λy.p.

Then λy.z[z/p] ⇓st λy.{{{p}}}{y}⟨x1, . . . , xn⟩[xi/qi]i≤n where the variables x1, . . . , xn are fresh
and pairwise distinct.

Proof. By Lemma 4.12, there is an n-ary pure context c such that λy.z[z/p] ↠nsub t =
λy.c⟨x1, . . . , xn⟩[xi/qi]1≤i≤n, where [q1; . . . ; qn] are the MFEs of λy.p. Thus, by the alterna-

tive definition of skeleton, c is {{{p}}}{y}. Moreover, t is the nsub-nf of λy.z[z/p] because no
more base 7→y-reduction steps can be applied to the list of explicit substitutions since y is
not free in q1, . . . , qn by definition of MFE.

From the fact that the two definitions of skeleton are equivalent, and from both proofs of
correctness (Lemma 4.8 and Corollary 4.13), we infer the equivalence between the small-step
and the big-step splitting semantics (Figure 3 and Figure 2 resp.). Since the small-step
semantics is contained in λR, we use it to build our call-by-need strategy using node
replication.

Another interesting question concerns the splitting semantics for terms with explicit
cuts. It is not always clear what the maximal free expressions are, as this notion depends on
the position of the explicit cuts in the term. For instance, take the term t = λy.z1[w/xy]z2.
What should be the MFEs of t? It could be [z1;x; z2], or [z1z2;x], or even [(z1z2)[w/x]].
Similarly for the skeleton, should it be respectively (1) λy.♢[w/x♢]♢, (2) λy.♢♢ or (3) λy.♢?
Solution (1) proposes to keep explicit substitutions in the skeleton. This is not coherent
with the semantics of λR and λa, which only substitute pure terms. Solution (2) consists
in unfolding the explicit cuts, so that the skeleton is pure. This can easily be obtained by
adding the following rule to the definition.

{{t[x/u]}}θ :=

{
{{t}}θ∪{x}{x/{{u}}θ}, if θ ∪ fv(u) ̸= ∅
{{t}}θ, otherwise

Indeed, this is the definition of skeleton adopted for the atomic λ-calculus in [GHP13a],
where the authors prove that the skeleton of a term with explicit substitutions (but without
explicit distributors) can be split from the MFEs. Unfortunately, they do not provide a
splitting rewriting relation.

In cases involving explicit cuts binding no variable, like [w/xy] in the term t above, this
definition is a cause of inefficiency: we would prefer solution (3), which avoids duplication of
the application node. More generally, many nodes can be duplicated inside a term to reach
a bound variable that will finally be erased. For instance, in the term λy.x1[w/y]x2x3 . . . xn,
n− 1 applications nodes will need to be duplicated, and the skeleton would be considered
λy.♢♢♢ . . .♢ (n times) following (2), and simply λy.♢ following (3). As another example,
the skeleton of λy.(λz.z[w/y])x would be considered λy.(λz.z)♢ following (2) and λy.♢
following (3). Unfortunately, this definition is hard to specify inductively (and therefore in a
big-steps semantics) without modifying the term first by permuting the cuts. Interestingly
though, giving a small-steps semantics for it simply amounts to allowing →st-reduction deep
inside the distributors.

The Call-by-Need Strategy. The call-by-need strategy →flneed (Figure 4) is defined
on the set of terms U, by using closure under the need contexts, given by the grammar

N ::= ♢ | Nt | N[x ◁ t] | N⟨⟨x⟩⟩[x/N]
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where N⟨⟨ ⟩⟩ denotes capture-free application of contexts (Subsection 2.1). Like call-by-name
(Subsection 4.1), the call-by-need strategy is weak, because no meaningful reduction steps
are performed under abstractions.

L⟨λx.p⟩u 7→dB L⟨p[x/u]⟩
N⟨⟨x⟩⟩[x/L⟨λy.p⟩] 7→spl L⟨LL⟨N⟨⟨x⟩⟩[x//λy.p′]⟩⟩ if λy.z[z/p] ⇓st λy.LL⟨p′⟩
N⟨⟨x⟩⟩[x//v] 7→ls N⟨⟨v⟩⟩[x//v]

Figure 4: Call-by-Need Strategy

Rule dB is the same one used to define name. Rule spl (named after splitting) only
uses node replication operations to compute the skeleton of the abstraction, while rule ls
implements one-shot linear substitution. There is no rule to substitute a variable, as it is
usually done in call-by-need for closed terms [AF97].

Linear substitution (replacing one free occurrence of a variable at a time) as implemented
by rule ls above is not captured by the calculus λR. This shows a limitation of λR and
λa, both using full substitution to implement fully lazy sharing. Yet, the demand-driven
philosophy of call-by-need is generally understood as replacing only some desired instance of
one variable [AF97]. This corresponds in particular to the behavior of abstract machines,
which make explicit some of the implementation features. Nonetheless, remark that the
substitution used in the small-steps semantics →st is linear, thanks to the restriction on
terms. Therefore, designing flneed as a strategy of a linear calculus with node replication
is straightforward.

Notice that as a particular case of Lemma 4.2, t ∈ U and t →flneed t′ implies t′ ∈ U.
Another interesting property is that t →ls t

′ implies lvz(t) ≥ lvz(t
′). Moreover, →flneed is

deterministic.

Lemma 4.14 (Determinism). The strategy →flneed is deterministic.

Proof. The left hand sides of the rules dB, dist and ls are disjoint. On the other hand, the
reduction relation →st is confluent and terminating by Lemma 4.11 so that ⇓st defines a
function, thus the relation →flneed is deterministic.

Example 4.15. Let t0 = (λx.(I(Ix)))(λy.yI). Needed variable occurrences are highlighted
in orange .

t0 →dB (I(Ix))[x/λy.yI] →dB x1 [x1/Ix][x/λy.yI]

→dB x1[x1/x2[x2/ x ]][x/λy.yI] →spl x1[x1/x2[x2/ x ]][x//λy.yz1][z1/I]

→ls x1[x1/ x2 [x2/λy.yz1]][x//λy.yz1][z1/I]

→spl x1[x1/ x2 [x2//λy.yz2][z2/z1]][x//λy.yz1][z1/I]

→ls x1 [x1/(λy.yz2) [x2//λy.yz2][z2/z1] ][x//λy.yz1][z1/I]

→spl x1 [x1//λy.yz3][z3/z2][x2//λy.yz2][z2/z1][x//λy.yz1][z1/I]

→ls (λy.yz3)[x1//λy.yz3][z3/z2][x2//λy.yz2][z2/z1][x//λy.yz1][z1/I]
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In order to characterize flneed-nfs, we use the notion of needed free variables,
defined as:

ndv(x) := {x} ndv(t[y/u]) :=

{
(ndv(t) \ {y}) ∪ ndv(u) if y ∈ ndv(t)

ndv(t) if y /∈ ndv(t)

ndv(tu) := ndv(t) ndv(t[x//u]) := ndv(t)
ndv(λx.t) := ∅
Thus e.g. ndv(x[y//I]I) = {x} and ndv((xy1)[x/zy2]) = {z}. In particular, x ∈ ndv(t)

implies x ∈ fv(t).

Lemma 4.16. Let t ∈ U. Then x ∈ ndv(t) iff there exists a context N such that t = N⟨⟨x⟩⟩.

Proof. By induction on t for the left-to-right implication and by induction on N for the other
one (see appendix on page 56).

Terms of U in flneed-nf can be characterized by the grammar Ne, defined upon the
grammar of neutral terms Ne. Notice that name-nfs are also flneed-nfs.

Ne ::= L⟨λx.t⟩ | Ne
Ne, Ne0 ::= x | Ne t | Ne[x ◁ u] x /∈ ndv(Ne) | Ne[x/Ne0] x ∈ ndv(Ne)

Lemma 4.17. Let t ∈ U. Then t ∈ Ne iff t is in flneed-nf.

Proof. By induction on the grammars (see appendix on page 56).

5. A Type System for λR

This section introduces a quantitative type system ∩R for λR. Non-idempotent inter-
section [Gar94] has one main advantage over the idempotent model [BDS13]: it gives
quantitative information about the length of reduction sequences to normal forms [dC07].
Indeed, not only typability and normalization can be proved to be equivalent, but a
measure based on type derivations provides an upper bound to normalizing reduction
sequences. This was extensively investigated in different logical/computational frame-
works [AGL19, BKRV20, CG14, Ehr12, Kes16, KV20]. However, no quantitative result
based on types exists in the literature for the node replication model, including the attempts
done for deep inference [GHP21]. The typing rules of our system are in themselves not
surprising (see for example [KV14] where a similar system is used for a λ-calculus with
explicit substitutions interpreting the logical cut rule), but they provide a handy quantitative
characterization of fully lazy normalization (Section 6).

Types are built on the following grammar of types and (finite) multi-types, where α
ranges over a set of base types, a is a special type constant used to type terms reducing to
normal abstractions and I ranges over finite sets.

(Types) σ := a | α | M → σ
(Multi-Types) M := [σi]i∈I

We write |M| to denote the size of a multi-type M. Typing environments, written Γ,
∆, Σ are functions from variables to multi-types, assigning the empty multiset to all but a
finite set of variables. The domain of Γ is given by dom(Γ) := {x | Γ(x) ̸= [ ]}. The union
of environments, written Γ⊎∆, is defined by (Γ⊎∆)(x) := Γ(x)⊔∆(x), where ⊔ denotes
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multiset union. For instance, (x : [σ], y : [τ ]) ⊎ (x : [σ], z : [τ ]) = (x : [σ, σ], y : [τ ], z : [τ ]).
This notion is extended to several environments as expected, so that ⊎i∈IΓi denotes a finite
union of environments, and the empty environment when I = ∅. We write Γ;∆ for Γ ⊎∆
when dom(Γ)∩dom(∆) = ∅. Type judgments have the form Γ ⊢ t : σ, where Γ is a typing
environment, t is a term and σ is a type. A (typing) derivation is a tree obtained by

x : [σ] ⊢ x : σ
(ax)

Γ;x : M ⊢ t : σ

Γ ⊢ λx.t : M → σ
(abs)

Γ ⊢ t : M → σ ∆ ⊢ u : M
Γ ⊎∆ ⊢ tu : σ

(app)

∅ ⊢ λx.t : a
(ans)

Γ;x : M ⊢ t : σ ∆ ⊢ u : M
Γ ⊎∆ ⊢ t[x ◁ u] : σ

(cut)
(Γi ⊢ t : σi)i∈I

⊎i∈IΓi ⊢ t : [σi]i∈I
(many)

Figure 5: Typing System ∩R

applying the (inductive) typing rules of system ∩R (Figure 5), introduced in [KV14]. The
notation Φ ▷ Γ ⊢ t : σ means there is a derivation named Φ of the judgment Γ ⊢ t : σ in
system ∩R. A term t is typable in system ∩R, or ∩R-typable, iff there is an environment Γ
and a type σ such that Φ▷ Γ ⊢ t : σ. The size of a type derivation sz(Φ) is defined as
the number of its rules (abs), (app) and (ans). The typing system is relevant :

Lemma 5.1 (Relevance). If Φ▷ Γ ⊢ t : σ, then dom(Γ) ⊆ fv(t).

Proof. Straightforward by induction on the typing derivation.

Example 5.2. The following tree is a type derivation (called Φu) in system ∩R for the
term u = x[x/yz].

x : [τ ] ⊢ x : τ
(ax)

y : [[τ ] → τ ] ⊢ y : [τ ] → τ
(ax)

z : [τ ] ⊢ z : τ
(ax)

z : [τ ] ⊢ z : [τ ]
(many)

y : [[τ ] → τ ], z : [τ ] ⊢ yz : τ

y : [[τ ] → τ ], z : [τ ] ⊢ yz : [τ ]
(many)

(app)

y : [[τ ] → τ ], z : [τ ] ⊢ x[x/yz] : τ
(cut)

Type derivations can be measured by triples. We use a + operation on triples as
pointwise addition: (n1, n2, n3) + (m1,m2,m3) = (n1 +m1, n2 +m2, n3 +m3). These triples
are computed by a weighted derivation level function defined on typing derivations as
D (Φ) := M (Φ, 1), where M (−,−) is inductively defined below. In the cases (abs), (app)
and (cut), we let Φt (resp. Φu) be the subderivation of the type of t (resp. Φu) and in
(many) we let Φi

t be the i-th derivation of the type of t for each i ∈ I.

• For (ax), M (Φx,m) = (0, 0, 1),
• For (abs), M (Φλx.t,m) = M (Φt,m) + (1,m, 0).
• For (ans), M (Φλx.t,m) = (1,m, 0).
• For (app), M (Φtu,m) = M (Φt,m) +M (Φu,m) + (1,m, 0).
• For (cut), M

(
Φt[x◁u],m

)
= M (Φt,m) +M (Φu,m+ lvx(t) + ES([x ◁ u])).

• For (many), M (Φt,m) =
∑

i∈I M
(
Φi
t,m

)
.

Intuitively, the first (resp. third) component of the 3-tuple M (Φ,m) counts the number
of application/abstraction (resp. axiom) rules in the typing derivation and do not depend on
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m. The second one takes into account the number of application/abstraction rules as well,
but weighted by the level of the constructor. The 3-tuples are ordered lexicographically.

Example 5.3. Take the derivation Φu from Example 5.2. Its measure is D (Φu) =
(1, 2, 3). Moreover, for x[x/yz] →app (x1x2)[x1/y][x2/z] we have Φu′ ▷ y : [σ], z : [τ ] ⊢
(x1x2)[x1/y][x2/z] : τ and D (Φu′) = (1, 1, 4).

Lemma 5.4. For all derivation Φ and all m,n ∈ N with m > n, M (Φ,m) = M (Φ, n) +
(0, (m− n) ∗ sz(Φ), 0).

Proof. By induction on Φ (see appendix on page 57).

Lemma 5.5 (Split). Let Φ▷∆ ⊢ u : M such that M = ⊔i∈IMi for I ≠ ∅. Then there are
derivations Φi ▷∆i ⊢ u : Mi such that ∆ = ⊎i∈I∆i and M (Φ,m) =

∑
i∈I M

(
Φi,m

)
.

Proof. Straightforward.

6. Observational Equivalence

The type system ∩R characterizes normalization of both name and flneed strategies as
follows: every typable term normalizes and every normalisable term is typable. In this
sense, system ∩R can be seen as a (quantitative) model [BE01] of our call-by-name and
call-by-need strategies. We prove these results by studying the appropriate lemmas, notably
weighted subject reduction and weighted subject expansion. We then deduce observational
equivalence between the name and the flneed strategies from the fact that their associated
normalization properties are both fully characterized by the same typing system.

Soundness. Soundness of system ∩R w.r.t. both →name and →flneed is investigated in
this section. More precisely, we show that typable terms are normalizing for both strate-
gies. In contrast to reducibility techniques needed to show this kind of result for simple
types [GHP13b], soundness is achieved here by relatively simple combinatorial arguments
based again on decreasing measures. We start by studying the interaction between system
∩R and linear as well as full substitution.

Lemma 6.1 (Partial Substitution). Let Φ ▷ Γ;x : M ⊢ C⟨⟨x⟩⟩ : σ and ⊑ denote multiset
inclusion. Then, there exists N ⊑ M such that for every Φu▷∆ ⊢ u : N we have Ψ▷Γ⊎∆;x :
M \ N ⊢ C⟨⟨u⟩⟩ : σ and, for every m ∈ N, M (Ψ,m) = M (Φ,m) + M (Φu,m+ lv♢(C)) −
(0, 0, |N |).

Proof. By induction on Φ (see appendix on page 58).

Corollary 6.2 (Substitution). If Φt ▷ Γ;x : M ⊢ t : σ and Φu ▷ ∆ ⊢ u : M, then
Φ▷Γ⊎∆ ⊢ t{x/u} : σ, and for all m ∈ N we have M (Φ,m) ≤ M (Φt,m)+M (Φu,m+ lvx(t)).
Moreover, |M| > 0 iff the inequality is strict.

Proof. The proof is by induction on |t|x. If |t|x = 0, then by the relevance Lemma 5.1
M = [ ], so that Φu necessarily comes from a (many) rule without any premise and thus
Φ = Φt. We have M (Φ,m) = M (Φt,m) +M (Φu,m+ lvx(t)) because M (Φu,m+ lvx(t)) =
(0, 0, 0). Otherwise, |t|x > 0 and we can write t as C⟨⟨x⟩⟩. By the partial substitution
Lemma 6.1, there exists N ⊑ M such that for all Φ0

u ▷∆0 ⊢ u : N , there is Φ′ ▷ Γ ⊎∆0;x :
M \ N ⊢ C⟨⟨u⟩⟩ : σ. By the split Lemma 5.5, there are derivations Φ1

u ▷ ∆1 ⊢ u :
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N and Φ2
u ▷ ∆2 ⊢ u : M \ N , where ∆ = ∆1 ⊎ ∆2 so that we can apply the partial

substitution Lemma to Φt and Φ1
u, and we obtain Φ′ ▷ Γ ⊎∆1;x : M\N ⊢ C⟨⟨u⟩⟩ : σ. Since

lv♢(C) ≤ lvx(t), we have M (Φ′,m) = M (Φt,m) + M
(
Φ1
u,m+ lv♢(C)

)
− (0, 0, |N |) ≤L.5.4

M (Φt,m) + M
(
Φ1
u,m+ lvx(t)

)
− (0, 0, |N |) ≤ M (Φt,m) + M

(
Φ1
u,m+ lvx(t)

)
. Because

x /∈ fv(u), |C⟨⟨u⟩⟩|x = |t|x − 1. We conclude by applying the i.h. on Φ′ and Φ2
u. We get

Φ ▷ Γ ⊎ ∆1 ⊎ ∆2 ⊢ C⟨⟨u⟩⟩{x/u} : σ = Γ ⊎ ∆ ⊢ t{x/u} : σ. For the measure, we use
lvx(C⟨⟨u⟩⟩) ≤ lvx(t) to get M (Φ,m) ≤ M (Φ′,m) + M

(
Φ2
u,m+ lvx(C⟨⟨u⟩⟩)

)
≤ M (Φt,m) +

M
(
Φ1
u,m+ lvx(t)

)
+M

(
Φ2
u,m+ lvx(t)

)
=L. 5.5 M (Φt,m) +M (Φu,m+ lvx(t)). If M ≠ [ ],

then either N or M\N is non-empty, so at least one of the two previous inequalities is
strict.

The key idea to show soundness is that the measure D (·) decreases w.r.t. the reduction
relations →name and →flneed:

Lemma 6.3 (Weighted Subject Reduction for →π). Let Φt0 ▷ Γ ⊢ t0 : σ and t0 →π t1.
Then there exists Φt1 ▷ Γ ⊢ t1 : σ such that M (Φt0 ,m) = M (Φt1 ,m) for every m ∈ N.

Proof. Let t0 = C⟨t′0⟩ and t1 = C⟨t′1⟩, where t′0 →π t′1 is a root step. We reason by induction
on C. We only detail one base case (where C = ♢) and one inductive case (see appendix on
page 60).

• t′0 = t[x ◁ u[y ◁ s]] 7→π t[x ◁ u][y ◁ s] = t′1, where y /∈ fv(t). Let Φi be

Φi
u ▷∆i

u; y : Ni ⊢ u : ρi

(
Φi,j
s ▷∆i,j

s ⊢ s : δj
)
j∈Ji

∆i
s ⊢ s : Ni

(many)

∆i
u ⊎∆i

s ⊢ u[y ◁ s] : ρi
(cut)

then the typing derivation Φ is of the form

Φt ▷ Γ′;x : M ⊢ t : σ

(
Φi ▷∆i

u ⊎∆i
s ⊢ u[y ◁ s] : ρi

)
i∈I

∆u ⊎∆s ⊢ u[y ◁ s] : M
(many)

Γ′ ⊎∆u ⊎∆s ⊢ t[x ◁ u[y ◁ s]] : σ
(cut)

where M = [ρi]i∈I , Ni = [δj ]j∈Ji , ∆u = ⊎i∈I∆
i
u, ∆

i
s = ⊎j∈Ji∆

i,j
s , and ∆s = ⊎i∈I∆

i
s. Let

Φs be (
Φi,j
s ▷∆i,j

s ⊢ s : δj
)
j∈Ji,i∈I

∆s ⊢ s : N
(many)

We then construct the following derivation Ψ.

Φt ▷ Γ′;x : M ⊢ t : σ

(
Φi
u ▷∆i

u; y : Ni ⊢ u : ρi
)
i∈I

∆u; y : N ⊢ u : M
(many)

Γ′ ⊎∆u; y : N ⊢ t[x ◁ u] : σ
(cut)

Φs ▷∆s ⊢ s : N
Γ′ ⊎∆u ⊎∆s ⊢ t[x ◁ u][y ◁ s] : σ

(cut)

where N = ⊔i∈INi, so that N = [δj ]j∈Ji,i∈I . Moreover, because y /∈ fv(t), we have
that lvy(t[x ◁ u]) = lvx(t) + lvy(u) + ES([x ◁ u]) if y ∈ fv(u), and lvy(t[x ◁ u]) = 0

otherwise. Now, we show that M
(
Φi,j
s ,m+ lvx(t) + ES([x ◁ u]) + lvy(u) + ES([y ◁ s])

)
=

M
(
Φi,j
s ,m+ lvy(t[x ◁ u]) + ES([y ◁ s])

)
. If y ∈ fv(u), this is immediate. Otherwise, by
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the Relevance Lemma 5.1 we have Ji = [ ] for any i thus s is necessarily typed with rule
(many) and no premise, so that both measures are equal to (0,0,0). Then,

M (Φ,m) = M (Φt,m) +
∑
i∈I

M
(
Φi
u,m+ lvx(t) + ES([x ◁ u])

)
+
∑
i∈I

∑
j∈Ji

M
(
Φi,j
s ,m+ lvx(t) + ES([x ◁ u]) + lvy(u) + ES([y ◁ s])

)
= M (Φt,m) +

∑
i∈I

M
(
Φi
u,m+ lvx(t) + ES([x ◁ u])

)
+
∑
i∈I

∑
j∈Ji

M
(
Φi,j
s ,m+ lvy(t[x ◁ u]) + ES([y ◁ s])

)
= M (Ψ,m)

• If C = u[x ◁ C′], then we have Φu ▷∆;x : M ⊢ u : σ and Φ′ ▷ Γ′ ⊢ C′⟨o⟩ : M. By the i.h.
there is Ψ′ ▷ Γ′ ⊢ C′⟨o′⟩ : M, so Ψ▷ Γ′ ⊎∆ ⊢ u[x ◁ C′⟨o′⟩] : σ. Moreover,

M (Φ,m) = M (Φu,m) +M
(
Φ′,m+ lvx(u) + ES([x ◁ u])

)
=i.h. M (Φu,m) +M

(
Ψ′,m+ lvx(u) + ES([x ◁ u])

)
= M (Ψ,m)

Lemma 6.4 (Weighted Subject Reduction for →sub). Let Φt0 ▷ Γ ⊢ t0 : σ. If t0 →sub t1,
then there exists Φt1 ▷ Γ ⊢ t1 : σ such that M (Φt0 ,m) ≥ M (Φt1 ,m) for every m ∈ N.

Proof. As remarked in Subsection 2.2, t0 →sub t1 implies t0 ↠π t′ →sub′ t1. By Lemma 6.3,
weighted subject reduction holds for t0 ↠π t′, so it is sufficient to show the statement for
the relation →sub′ . We reason by induction on this relation. We show the base cases for
7→app′ and 7→dist′ , the cases 7→abs′ and 7→var′ are simply by the substitution Corollary 6.2,
and the inductive cases are straightforward by the i.h.

• t0 = t[x/us] →app t{x/yz}[y/u][z/s] = t1, where y and z are fresh variables. Let Φi be of
the form

Φi
u ▷ Γi

u ⊢ u : Ni → ρi Φi
s ▷ Γi

s ⊢ s : Ni

Γi
u ⊎ Γi

s ⊢ us : ρi
(app)

then the typing derivation Φt0 is of the form

Φt ▷ Γ′;x : M ⊢ t : σ

(
Φi ▷ Γi

u ⊎ Γi
s ⊢ us : ρi

)
i∈I

Γu ⊎ Γs ⊢ us : M
(many)

Γ′ ⊎ Γu ⊎ Γs ⊢ t[x/us] : σ
(cut)

where M = [ρi]i∈I , Γu = ⊎i∈IΓ
i
u and Γs = ⊎i∈IΓ

i
s. We have

M (Φt0 ,m) = M (Φt,m)

+
∑
i∈I

(
M
(
Φi
u,m+ lvx(t) + 1

)
+M

(
Φi
s,m+ lvx(t) + 1

)
+ (1,m+ lvx(t) + 1, 0)

)
Let us consider Φ′ ▷ Γ′; y : Nu; z : Ns ⊢ t{x/yz} : σ, obtained by Corollary 6.2 from Φt

and Φyz ▷ y : Nu; z : Ns ⊢ yz : [ρi]i∈I , where Nu = [Ni → ρi]i∈I and Ns = ⊔i∈INi. Let

Φu =
(Φi

u ▷ Γi
u ⊢ u : Ni → ρi)i∈I

Γu ⊢ u : Nu
(cut) Φs =

(Φi
s ▷ Γi

s ⊢ s : Ni)i∈I

Γs ⊢ s : Ns
(cut)
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We construct the following derivation Φt1 with two applications of rule (cut).

Φ′ ▷ Γ′; z : Ns; y : Nu ⊢ t{x/yz} : σ Φu ▷ Γu ⊢ u : Nu

(Γ′; z : Ns) ⊎ Γu ⊢ t{x/yz}[y/u] : σ Φs ▷ Γs ⊢ s : Ns

Γ′ ⊎ Γu ⊎ Γs ⊢ t{x/yz}[y/u][z/s] : σ

We consider two cases to conclude:
– If M = [ ], then

M (Φt1 ,m) = M
(
Φ′,m

)
+
∑
i∈I

M
(
Φi
u,m+ lvy(t{x/yz}) + 1

)
+
∑
i∈I

M
(
Φi
s,m+ lvz(t{x/yz}[y/u]) + 1

)
= M

(
Φ′,m

)
=L. 6.2 M (Φt,m) = M (Φt0 ,m)

– If M ≠ [ ], then

M (Φt1 ,m) = M
(
Φ′,m

)
+
∑
i∈I

M
(
Φi
u,m+ lvy(t{x/yz}) + 1

)
+
∑
i∈I

M
(
Φi
s,m+ lvz(t{x/yz}[y/u]) + 1

)
= M

(
Φ′,m

)
+
∑
i∈I

M
(
Φi
u,m+ lvy(t{x/yz}) + 1

)
+
∑
i∈I

M
(
Φi
s,m+ lvz(t{x/yz}) + 1

)
=L. 2.5:2 M

(
Φ′,m

)
+
∑
i∈I

(
M
(
Φi
u,m+ lvx(t) + 1

)
+M

(
Φi
s,m+ lvx(t) + 1

))
≤L. 6.2 M (Φt,m) +M (Φyz,m+ lvx(t))

+
∑
i∈I

(
M
(
Φi
u,m+ lvx(t) + 1

)
+M

(
Φi
s,m+ lvx(t) + 1

))
= M (Φt,m) + (1,m+ lvx(t), 2)

+
∑
i∈I

(
M
(
Φi
u,m+ lvx(t) + 1

)
+M

(
Φi
s,m+ lvx(t) + 1

))
< M (Φt,m)

+
∑
i∈I

(
M
(
Φi
u,m+ lvx(t) + 1

)
+M

(
Φi
s,m+ lvx(t) + 1

)
+ (1,m+ lvx(t), 2)

)
< M (Φt0 ,m) .

• t0 = t[x/λy.u] →dist t[x//λy.z[z/u]] = t1. The typing derivation is of the form

Φt0 =
Φt ▷ Γ′;x : M ⊢ t : σ Φλy.u ▷ Γλy.u ⊢ λy.u : M

Γ′ ⊎ Γλy.u ⊢ t[x/λy.u] : σ
(cut)

where

Φλy.u =

(
Φi ▷ Γi

λy.u; y : Ni ⊢ u : ρi

Γi
λy.u ⊢ λy.u : Ni → ρi

(abs)

)
i∈I

(
⊢ λy.u : a

(ans)

)k

Γλy.u ⊢ λy.u : M
(many)
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and M = [Ni → ρi]i∈I ⊔ [a, . . . , a︸ ︷︷ ︸
k

], with Γλy.u = ⊎i∈IΓ
i
λy.u. Moreover,

M (Φt0 ,m) = M (Φt,m) + k ∗ (1,m+ lvx(t) + 1, 0)

+
∑
i∈I

(
M
(
Φi,m+ lvx(t) + 1

)
+ (1,m+ lvx(t) + 1, 0)

)
We construct the following derivation

Φt1 =
Φt ▷ Γ′;x : M ⊢ t : σ Φλ ▷ Γλy.u ⊢ λy.z[z/u] : M

Γ′ ⊎ Γλy.u ⊢ t[x//λy.z[z/u]] : σ
(cut)

where

Φλ =

(
Φi
λ ▷ Γi

λy.u; y : Ni ⊢ z[z/u] : ρi

Γi
λy.u ⊢ λy.z[z/u] : Ni → ρi

(abs)

)
i∈I

(
⊢ λy.z[z/u] : a

(ans)

)k

Γλy.u ⊢ λy.z[z/u] : M
(many)

with Φi
λ of the form

z : [ρi] ⊢ z : ρi
(ax)

Φi ▷ Γi
λy.u; y : Ni ⊢ u : ρi

Γi
λy.u; y : Ni ⊢ z[z/u] : ρi

(cut)

We have

M (Φt1 ,m) = M (Φt,m) + k ∗ (1,m+ lvx(t), 0)

+
∑
i∈I

(
M
(
Φi,m+ lvx(t) + 1

)
+ (0, 0, 1) + (1,m+ lvx(t), 0)

)
≤ M (Φt0 ,m)

Lemma 6.5 (Weighted Subject Reduction for →ndB). Let Φt0 ▷ Γ ⊢ t0 : σ. If t0 →ndB t1,
then there exists Φt1 ▷ Γ ⊢ t1 : σ such that M (Φt0 ,m) > M (Φt1 ,m) for every m ∈ N.

Proof. We prove that M (Φt0 ,m) > M (Φt1 ,m) by showing in particular that it is the first
component of the 3-tuple that strictly decreases.

We reason by induction on the reduction relation →ndB.

• If t0 = L⟨λx.t⟩u →dB L⟨t[x/u]⟩ = t1, then we reason by induction on L. The inductive step
follows from Lemma 6.3, so we only show the base case L = ♢. The typing derivation Φt0

is of the form

Φt ▷ Γ′;x : M ⊢ t : σ

Γ′ ⊢ λx.t : M → σ
(abs)

Φu ▷ Γu ⊢ u : M
Γ′ ⊎ Γu ⊢ (λx.t)u : σ

(app)

and M (Φt0 ,m) = M (Φt,m) +M (Φu,m) + (2, 2 ∗m, 0).
We construct the following derivation.

Φt1 =
Φt ▷ Γ′;x : M ⊢ t : σ Φu ▷ Γu ⊢ u : M

Γ′ ⊎ Γu ⊢ t[x/u] : σ
(cut)
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We have

M (Φt1 ,m) = M (Φt,m) +M (Φu,m+ lvx(t) + 1)

=L. 5.4 M (Φt,m) +M (Φu,m) + (0, (lvx(t) + 1) ∗ sz(Φu), 0)

< M (Φt0 ,m)

Notice that it is the first component of the first 3-tuple that strictly decreases by 2.
• If t0 = tu →ndB t

′u = t1, where t →ndB t
′, then the property trivially holds by the i.h.

• If t0 = t[x/u] →ndB t
′[x/u] = t1, where t →ndB t

′, then Γ = Γ′\\x ⊎∆ and Φt ▷ Γ′;x : M ⊢
t : σ and Φu▷∆ ⊢ u : M. Moreover, M (Φt0 ,m) = M (Φt,m)+M (Φu,m+ lvx(t) + 1). By
the i.h. we have Φt′ ▷ Γ′;x : M ⊢ t′ : σ and M (Φt,m) >i.h. M (Φt′ ,m), where in particular
it is the first component of the first 3-tuple that strictly decreases. Derivation Φt1 is then
obtained by rule (cut) from Φt′ and Φu. We can conclude since:

M (Φt1 ,m) = M (Φt′ ,m) +M
(
Φu,m+ lvx(t

′) + 1
)

=L. 5.4 M (Φt′ ,m) +M (Φu,m) + (0, (lvx(t
′) + 1) ∗ sz(Φu), 0)

<i.h. M (Φt,m) +M (Φu,m) + (0, (lvx(t) + 1) ∗ sz(Φu), 0)

=L. 5.4 M (Φt,m) +M (Φu,m+ lvx(t) + 1)

= M (Φt0 ,m)

Note that even when lvx(t
′) > lvx(t), the inequationM (Φt1 ,m) < M (Φt0 ,m) is determined

by the strict relation between the first components of the 3-tuples, that is, the unweighted
number of abstraction and application rules.

Lemma 6.6. Let Φ ▷ Γ ⊢ N⟨⟨x⟩⟩ : τ . Then there exists Γ′, I ̸= ∅ and [σi]i∈I such that
Γ = Γ′ ⊎ x : [σi]i∈I and for any variable z there is a proof Φ′ ▷ Γ′ ⊎ z : [σi]i∈I ⊢ N⟨⟨z⟩⟩ : τ . In
particular, if z is fresh, then Γ′ ⊎ z : [σi]i∈I = Γ′; z : [σi]i∈I .

Proof. By induction on N.

• If N = ♢, this is straightforward by taking Γ′ = ∅ and [σi]i∈I = [τ ].
• If N = N′t or N = N′[x ◁ t], then there is a derivation Φ′ ▷ Γ1 ⊢ N′⟨⟨x⟩⟩ : τ ′, such that
Γ = Γ1 ⊎ Γ2 and τ ′ = M → τ or τ = τ ′, respectively. By the i.h. Γ1 = Γ′

1 ⊎ x : [σi]i∈I , so
that Γ′ = Γ′

1 ⊎ Γ2.
• If N = N1⟨⟨y⟩⟩[y/N2], the derivation is as follows.

Γ1; y : [ρj ]j∈J ⊢ N1⟨⟨y⟩⟩ : τ
(Γj ⊢ N2⟨⟨x⟩⟩ : ρj)j∈J

⊎j∈JΓj ⊢ N2⟨⟨x⟩⟩ : [ρj ]j∈J
(many)

Γ ⊢ N1⟨⟨y⟩⟩[y/N2⟨⟨x⟩⟩] : τ
(cut)

Where Γ = Γ1 ⊎ Γ2 and Γ2 = ⊎j∈JΓj . By the i.h. on N1, Γ1; y : [ρj ]j∈J = Γ′ ⊎ y : [ρj ]j∈J ′

for some ∅ ̸= J ′ ⊆ J . Thus J ̸= ∅. By the i.h. on N2, for every j ∈ J we have
Γj = Γ′

j ⊎ x : [σi]i∈Ij , where Ij ̸= ∅ and a proof Φj ▷ Γ′
j ⊎ z : [σi]i∈Ij ⊢ N2⟨⟨z⟩⟩ : ρj

for a variable z. We then take I = ∪j∈JIj and Γ′ = Γ1 ⊎j∈J Γ′
j .

Lemma 6.7 (Weighted Subject Reduction for flneed). Let Φt0▷Γ ⊢ t0 : σ. If t0 →flneed t1,
then there exists Φt1 ▷ Γ ⊢ t1 : σ such that M (Φt0 ,m) > M (Φt1 ,m) for every m ∈ N.
Proof. We prove that M (Φt0 ,m) > M (Φt1 ,m) by showing in particular that the first
component of the first 3-tuple strictly decreases when the reduction is dB. We reason by
induction on the reduction relation, i.e. by induction on the context N where the root
reduction takes place. We first detail the base case when N = ♢.
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• t0 = L⟨λx.t⟩u →dB L⟨t[x/u]⟩ = t1. This case is the same as for name.
• t0 = N⟨⟨x⟩⟩[x/λy.p] →spl LL⟨N⟨⟨x⟩⟩[x//λy.p′]⟩ = t1, where λy.z[z/p] ⇓st λy.LL⟨p′⟩. The
typing derivation Φt0 is of the form

Φ▷ Γ′;x : N ⊢ N⟨⟨x⟩⟩ : σ
(Φi

λy.p ▷∆i ⊢ λy.p : σi)i∈I

∆ ⊢ λy.p : N
(many)

Γ′ ⊎∆ ⊢ N⟨⟨x⟩⟩[x/λy.p] : σ
(cut)

where N = [σi]i∈I , ∆ = ⊎i∈I∆i and Γ = Γ′ ⊎∆. Moreover, I ≠ ∅ by Lemma 6.6. For each
σi we build the following derivations Φi

p0 :

– if σi = Mi → τi then Φi
p0 is of the form

z : [τi] ⊢ z : τi
(ax)

Φi
p ▷∆i; y : Mi ⊢ p : τi

∆i; y : Mi ⊢ z[z/p] : τi

∆i ⊢ λy.z[z/p] : Mi → τi
(abs)

(cut)

where Φi
p is obtained from Φi

λy.p by reversing the (abs) rule.

– if σi = a then Φi
p0 =

⊢ λy.z[z/p] : a
(ans) .

By hypothesis, λy.z[z/p] ↠st λy.LL⟨p′⟩. Since →st is included in →sub, then we know by
Lemma 6.4 that there are derivations Φi

p1 ▷∆i ⊢ λy.LL⟨p′⟩ : σi such that M
(
Φi
p0 ,m

)
≥

M
(
Φi
p1 ,m

)
. Thus, we can build the following derivation.

Φ′
t1 =

Φ▷ Γ′;x : N ⊢ N⟨⟨x⟩⟩ : σ
(Φi

p1 ▷∆i ⊢ λy.LL⟨p′⟩ : σi)i∈I
∆ ⊢ λy.LL⟨p′⟩ : N

(many)

Γ′ ⊎∆ ⊢ N⟨⟨x⟩⟩[x//λy.LL⟨p′⟩] : σ
(cut)

Let n = lvx(N⟨⟨x⟩⟩). We begin showing that M
(
Φi
λy.p,m+ n+ 1

)
> M

(
Φi
p0 ,m+ n

)
for

every i ∈ I. There are two cases.

(1) If σi = a, then M
(
Φi
λy.p,m+ n+ 1

)
= (1,m + n + 1, 0), while M

(
Φi
p0 ,m+ n

)
=

(1,m+ n, 0).

(2) If σi = Mi → τi, then M
(
Φi
λy.p,m+ n+ 1

)
= (1,m+ n+ 1, 0) +M

(
Φi
p,m+ n+ 1

)
and

M
(
Φi
p0 ,m+ n

)
= (1,m+ n, 0) + (0, 0, 1) +M

(
Φi
p,m+ n+ lvz(z) + 1

)
= (1,m+ n, 1) +M

(
Φi
p,m+ n+ 1

)
.

So that M
(
Φi
λy.p,m+ n+ 1

)
> M

(
Φi
p0 ,m+ n

)
since (1,m+n+1, 0) > (1,m+n, 1).
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Finally, we have:

M
(
Φ′
t1 ,m

)
= M (Φ,m) +

∑
i∈I

M
(
Φi
p1 ,m+ n

)
≤L. 6.4 M (Φ,m) +

∑
i∈I

M
(
Φi
p0 ,m+ n

)
< M (Φ,m) +

∑
i∈I

M
(
Φi
λy.p,m+ n+ 1

)
= M (Φt0 ,m)

By Lemma 6.3, we can finally construct Φt1 ▷ Γ′ ⊎∆ ⊢ LL⟨N⟨⟨x⟩⟩[x//λy.p′]⟩ : σ, where
M (Φt1 ,m) = M

(
Φ′
t1 ,m

)
.

• t0 = N⟨⟨x⟩⟩[x//v] →ls N⟨⟨v⟩⟩[x//v] = t1. The typing derivation Φt0 is of the form

Φ▷ Γ′;x : M ⊢ N⟨⟨x⟩⟩ : σ
(Φi

v ▷∆i ⊢ v : τi)i∈I

Φv ▷∆ ⊢ v : M
(many)

Γ′ ⊎∆ ⊢ N⟨⟨x⟩⟩[x//v] : σ
(cut)

where M = [τi]i∈I and ∆ = ⊎i∈I∆i. By Lemma 6.6 we know that there is a non-empty
N ⊑ M which types the variable x in the hole of the context N. We can then write M as
N ⊔N ′. By Lemma 5.5 there are two derivations Φv1 ▷∆1 ⊢ v : N and Φv2 ▷∆2 ⊢ v : N ′

such that ∆ = ∆1 ⊎∆2 and M (Φv,m) = M (Φv1 ,m) +M (Φv2 ,m). Using Lemma 6.1, we
can construct:

Φt1 =
Ψ▷ Γ′ ⊎∆1;x : N ′ ⊢ N⟨⟨v⟩⟩ : σ Φv2 ▷∆2 ⊢ v : N ′

Γ′ ⊎∆;x : N ′ ⊢ N⟨⟨v⟩⟩[x//v] : σ
(cut)

We clearly have lv♢(N) ≤ lvx(N⟨⟨x⟩⟩) and, because x /∈ fv(v), we also have lvx(N⟨⟨v⟩⟩) ≤
lvx(N⟨⟨x⟩⟩). Then,

M (Φt1 ,m) = M (Ψ,m) +M (Φv2 ,m+ lvx(N⟨⟨v⟩⟩))
=L. 6.1 M (Φ,m) +M (Φv1 ,m+ lv♢(N))− (0, 0, |N |) +M (Φv2 ,m+ lvx(N⟨⟨v⟩⟩))
≤ M (Φ,m) +M (Φv1 ,m+ lvx(N⟨⟨x⟩⟩))− (0, 0, |N |) +M (Φv2 ,m+ lvx(N⟨⟨x⟩⟩))
< M (Φ,m) +M (Φv1 ,m+ lvx(N⟨⟨x⟩⟩)) +M (Φv2 ,m+ lvx(N⟨⟨x⟩⟩))
= M (Φt0 ,m)

Now, we analyse all the inductive cases of the form t0 = N⟨t′0⟩ →flneed N⟨t′1⟩ = t1, where
t′0 →flneed t

′
1.

(1) If N = N′u, then we have Φt′0
▷ Γ′ ⊢ N′⟨t′0⟩ : N → σ and Φu ▷∆ ⊢ u : N . By the i.h.

there is Φt′1
▷ Γ′ ⊢ N′⟨t′1⟩ : N → σ, so Φt1 ▷ Γ′ ⊎∆ ⊢ N′⟨t′1⟩u : σ. Moreover, M (Φt0 ,m) =

M
(
Φt′0

,m
)
+M (Φu,m)+(1,m, 0) >i.h. M

(
Φt′1

,m
)
+M (Φu,m)+(1,m, 0) = M (Φt1 ,m).

(2) If N = N′[x ◁ u], then we have Φt′0
▷ Γ′;x : M ⊢ N′⟨t′0⟩ : σ and Φu ▷∆ ⊢ u : M. By the

i.h. there is Φt′1
▷Γ′;x : M ⊢ N′⟨t′1⟩ : σ, so Φt1 ▷Γ′ ⊎∆ ⊢ N′⟨t′1⟩[x◁u] : σ. We distinguish

three different cases:
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• If t′0 →flneed t
′
1 is a dB-step: then we know by the i.h. that M

(
Φt′0

,m
)
> M

(
Φt′1

,m
)

strictly decreases the first component of the first 3-tuple. We then have

M (Φt1 ,m) = M
(
Φt′1

,m
)
+M

(
Φu,m+ lvx(N

′⟨t′1⟩) + 1
)

=L. 5.4 M
(
Φt′1

,m
)
+M (Φu,m) + (0, (lvx(N

′⟨t′1⟩) + 1) ∗ sz(Φu), 0)

<i.h. M
(
Φt′0

,m
)
+M (Φu,m) + (0, (lvx(N

′⟨t′0⟩) + 1) ∗ sz(Φu), 0)

=L. 5.4 M
(
Φt′0

,m
)
+M

(
Φu,m+ lvx(N

′⟨t′0⟩) + 1
)

= M (Φt0 ,m)

• If t′0 →flneed t′1 is an spl-step, then t′0 ↠sub t′1, so that N′⟨t′0⟩ ↠sub N′⟨t′1⟩, and thus
lvx(N

′⟨t′0⟩) ≥ lvx(N
′⟨t′1⟩) holds by Lemma 2.6. We then conclude by:

M (Φt1 ,m) = M
(
Φt′1

,m
)
+M

(
Φu,m+ lvx(N

′⟨t′1⟩) + 1
)

<i.h. M
(
Φt′0

,m
)
+M

(
Φu,m+ lvx(N

′⟨t′1⟩) + 1
)

≤ M
(
Φt′0

,m
)
+M

(
Φu,m+ lvx(N

′⟨t′0⟩) + 1
)

= M (Φt0 ,m)

• If t′0 →flneed t
′
1 is a ls-step, then we know that N′⟨t′0⟩ →flneed N

′⟨t′1⟩ also holds, then
lvx(N

′⟨t′0⟩) ≥ lvx(N
′⟨t′1⟩). We conclude as before.

(3) If N = N1⟨⟨x⟩⟩[x/N2], then we have Φ1 ▷∆;x : M ⊢ N1⟨⟨x⟩⟩ : σ and Φt′0
▷ Γ′ ⊢ N2⟨t′0⟩ : M.

By the i.h. there is Φt′1
▷ Γ′ ⊢ N2⟨t′1⟩ : M, so Φt1 ▷ Γ′ ⊎ ∆ ⊢ N1⟨⟨x⟩⟩[x ◁ N2⟨t′1⟩] : σ.

Moreover, M (Φt0 ,m) = M (Φ1,m) + M
(
Φt′0

,m+ lvx(N1⟨⟨x⟩⟩) + ES([x ◁ N2⟨t′0⟩])
)

>i.h.

M (Φ1,m) +M
(
Φt′1

,m+ lvx(N1⟨⟨x⟩⟩) + ES([x ◁ N2⟨t′1⟩])
)
= M (Φt1 ,m).

Example 6.8. Consider the following reduction sequence:

(I(x1I))[x1/λy.Iy] →dB x2[x2/x1I][x1/λy.Iy] →spl x2[x2/x1I][x1//λy.zy][z/I]

We have Φ1 ▷ ∅ ⊢ (I(x1I))[x1/λy.Iy] : a with Φ1 of the form

ΦI Φx1I

x1 : [[a] → a] ⊢ I(x1I) : a
(app)

ΦI

y : [a] ⊢ y : a
(ax)

y : [a] ⊢ y : [a]
(many)

y : [a] ⊢ Iy : a

∅ ⊢ λy.Iy : [a] → a

∅ ⊢ λy.Iy : [[a] → a]
(many)

(abs)

(app)

∅ ⊢ (I(x1I))[x1/λy.Iy] : a
(cut)

where

ΦI =
x : [a] ⊢ x : a

(ax)

∅ ⊢ I : [a] → a
(abs)
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and

Φx1I =
x1 ⊢ [[a] → a] : x1[a] → a

(ax)
∅ ⊢ I : a

(ans)

∅ ⊢ I : [a]
(many)

x1 : [[a] → a] ⊢ x1I : a

x1 : [[a] → a] ⊢ x1I : [a]
(many)

(app)

We also have Φ2 ▷ ∅ ⊢ x2[x2/x1I][x1/λy.Iy] : a with Φ2 of the form

x2 : [a] ⊢ x2 : a
(ax)

Φx1I

x1 : [[a] → a] ⊢ x2[x2/x1I] : a
(cut)

ΦI

y : [a] ⊢ y : a
(ax)

y : [a] ⊢ y : [a]
(many)

y : [a] ⊢ Iy : a

∅ ⊢ λy.Iy : [a] → a

∅ ⊢ λy.Iy : [[a] → a]
(many)

(abs)

(app)

∅ ⊢ x2[x2/x1I][x1/λy.Iy] : a
(cut)

Concerning the measures we have D (Φ1) = (7, 10, 4) > (5, 13, 4) = D (Φ2). The first element
of the 3-tuple decreases from 7 to 5 because we lost an abstraction and an application
constructors during dB-reduction. Note also that in Φ1 we have M (Φx1I, 1) = (2, 2, 1) while
in Φ2 we have M (Φx1I, 2) = (2, 4, 1) = M (Φx1I, 1) + (0, sz(Φx1I), 0). Besides, we have
Φ3 ▷ ∅ ⊢ x2[x2/x1I][x1//λy.zy][z/I] : a where Φ3 is of the form

x2 : [a] ⊢ x2 : a
(ax)

Φx1I

x1 : [[a] → a] ⊢ x2[x2/x1I] : a
(cut)

Φ′
3

z : [[a] → a] ⊢ x2[x2/x1I][x1//λy.zy] : a
(cut)

ΦI

∅ ⊢ x2[x2/x1I][x1//λy.zy][z/I] : a
(cut)

where Φ′
3 is

z : [[a] → a] ⊢ z : [a] → a
(ax)

y : [a] ⊢ y : a
(ax)

y : [a] ⊢ y : [a]
(many)

z : [[a] → a]; y : [a] ⊢ zy : a

z : [[a] → a] ⊢ λy.zy : [a] → a

z : [[a] → a] ⊢ λy.zy : [[a] → a]
(many)

(abs)

(app)

Therefore D (Φ3) = (5, 11, 5) < (5, 13, 4) = D (Φ2), where the second element of the 3-tuple
has decreased from 13 to 11 because two nodes of the term λy.Iy, namely the binder and the
application, have moved from the explicit substitution of level 3 to the distributor of level 2.

Theorem 6.9 (Typability implies name-Normalization). Let Φt ▷ Γ ⊢ t : σ. Then t is
name-normalizing. Moreover, the first element of D (Φt) is an upper bound for the number
of dB-steps to name-nf.

Proof. Suppose t is not name-normalizing. Since →sub is terminating by Corollary 3.8, then
every infinite →name-reduction sequence starting at t must necessarily have an infinite number
of dB-steps. Moreover, all terms in such an infinite sequence are typed by Lemma 6.5 and
Lemma 6.4. Therefore, these lemmas guarantee that all dB/sub reduction steps involved in
such →name-reduction sequence do not increase the measure D (·), and that, in particular,
dB-steps strictly decrease it by decreasing the first element of the triple. This leads to a
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contradiction because the order > on 3-tuples D (·) is well-founded. Then t is necessarily
name-normalizing.

Theorem 6.10 (Typability implies flneed-Normalization). Let Φt ▷ Γ ⊢ t : σ. Then t is
flneed-normalizing. Moreover, the first element of D (Φt) is an upper bound for the number
of dB-steps to flneed-nf.

Proof. The property trivially holds by Lemma 6.7 since the lexicographic order on 3-tuples
is well-founded.

Completeness. We address here completeness of system ∩R with respect to →name and
→flneed. More precisely, we show that normalizing terms in each strategy are typable. The
basic property in showing that consists in guaranteeing that normal forms are typable.

Lemma 6.11 (flneed-nfs are Typable). Let t be in flneed-nf. Then there exists a derivation
Φ▷ Γ ⊢ t : τ such that for any x /∈ ndv(t), Γ(x) = [ ].

Proof. By Lemma 4.17 we can reason by induction on the grammar Ne (see appendix on
page 63).

Example 6.12. Remember that ndv((xy1)[x/z]y1) = {z} and note that ndv(xy1) = {x}.

x : [ ] → τ ⊢ x : [ ] → τ ∅ ⊢ y1 : [ ]

x : [ ] → τ ⊢ xy1 : τ

z : [ ] → [ ] → τ ⊢ z : [ ] → [ ] → τ ∅ ⊢ y2 : [ ]

z : [ ] → [ ] → τ ⊢ zy2 : [ ] → τ

z : [ ] → [ ] → τ ⊢ (xy1)[x/zy2] : τ

Because name-nfs are also flneed-nfs, we infer the following corollary for free.

Corollary 6.13 (name-nfs are Typable). Let t be in name-nf. Then there is a derivation
Φ▷ Γ ⊢ t : τ .

We need lemmas stating the behavior of partial and full (anti-)substitution w.r.t. typing.

Lemma 6.14 (Partial Anti-Substitution). Let C⟨⟨x⟩⟩ and u be terms s.t. x /∈ fv(u) and
Φ▷Γ ⊢ C⟨⟨u⟩⟩ : σ. Then ∃Γ′, ∃∆, ∃M, ∃Φ′, ∃Φu s.t. Γ = Γ′⊎∆, Φ′▷Γ′⊎x : M ⊢ C⟨⟨x⟩⟩ : σ
and Φu ▷∆ ⊢ u : M.

Proof. By induction on C (see appendix on page 63).

Corollary 6.15 (Anti-Substitution). Let u be a term s.t. x /∈ fv(u) and Φ▷ Γ ⊢ t{x/u} : σ.
Then ∃Γ′, ∃∆, ∃M, ∃Φ′, ∃Φu s.t. Γ = Γ′ ⊎∆, Φ′ ▷ Γ′;x : M ⊢ t : σ and Φu ▷∆ ⊢ u : M.

Proof. The proof is by induction on |t|x.
• If |t|x = 0 then t{x/u} = t and, by Lemma 5.1, x /∈ dom(Γ) then Γ = Γ;x : [ ]. Therefore,
for Γ′ := Γ, ∆ := ∅, M = [ ], Φ′ := Φ and Φu :=

⊢ u : [ ]
the result holds.

• If |t|x ≥ 1 then let C⟨⟨x⟩⟩ such that t{x/u} = C⟨⟨u⟩⟩. For any fresh y, we have that
t{x/u} = C⟨⟨y⟩⟩{y/u} where C⟨⟨y⟩⟩ = t′{x/u} s.t. t = t′{y/x}. Note that |t′|x < |t|x. Then
by Lemma 6.14 ∃Γ′′, ∃∆′, ∃N , ∃Φ′′, ∃Φ′

u s.t. Γ = Γ′′ ⊎∆′, Φ′′ ▷ Γ′′ ⊎ y : N ⊢ C⟨⟨y⟩⟩ : σ
and Φ′

u ▷∆′ ⊢ u : N where, by freshness of y, Γ′′ ⊎ y : N = Γ′′; y : N . Therefore, by the
i.h. on Φ′′ ∃Γ′′′, ∃∆′′, ∃N ′, ∃Φ′′′, ∃Φ′′

u s.t. Γ′′; y : N = Γ′′′ ⊎∆′′, Φ′′′ ▷ Γ′′′;x : N ′ ⊢ t′ : σ
and Φ′′

u ▷∆′′ ⊢ u : N ′. By freshness of y and relevance, we have y /∈ dom(∆′′). Then
Γ′′′ = Γiv; y : N where Γ′′ = Γiv ⊎∆′′. From Φ′′′ and Lemma 6.1 we have Φ′ ▷ (Γiv;x :
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N ′)⊎x : N ⊢ t : σ while from Φ′
u and Φ′′

u we obtain Φu▷∆′⊎∆′′ ⊢ u : N ⊔N ′. Finally, for
Γ′ := Γiv, ∆ := ∆′⊎∆′′, M = N⊔N ′ the result holds, since (Γiv;x : N ′)⊎x : N = Γ′;x : M
and Γ′ ⊎∆ = Γiv ⊎∆′′ ⊎∆′ = Γ′′ ⊎∆′ = Γ.

To achieve completeness, we show that typing is preserved by anti-reduction.

Lemma 6.16 (Subject Expansion). Let Φt1 ▷ Γ ⊢ t1 : σ. If t0 →r t1, where r ∈
{π, sub, ndB, flneed}, then there exists Φt0 ▷ Γ ⊢ t0 : σ.

Proof. The proof is by induction on →r and uses Lemma 6.14 and Corollary 6.15. We
detail some interesting cases of the proof. In all the cases shown, we suppose that the list
context L of the general rule is empty (L = ♢), since we can use subject expansion for →π

to manipulate it.

• t0 = t[x/us] 7→sub t{x/yz}[y/u][z/s] = t1. Then Φt1 is of the form

Φ▷ Γ′; z : Ns; y : Nu ⊢ t{x/yz} : σ Φu ▷∆u ⊢ u : Nu

(Γ′ ⊎∆u); z : Ns ⊢ t{x/yz}[y/u] : σ Φs ▷∆s ⊢ s : Ns

Γ′ ⊎∆u ⊎∆s ⊢ t{x/yz}[y/u][z/s] : σ

where Γ = Γ′ ⊎∆u ⊎∆s. Also (Γ′; z : Ns) ⊎∆u = (Γ′ ⊎∆u); z : Ns since z /∈ dom(∆u) by
the Relevance Lemma 5.1. By Corollary 6.15 ∃Γ′′, ∃∆, ∃M, ∃Φ′, ∃Φyz s.t. Γ′; z : Ns; y :
Nu = Γ′′ ⊎∆, Φ′ ▷ Γ′′;x : M ⊢ t : σ and Φyz ▷∆ ⊢ yz : M. By freshness of y, z and
Lemma 5.1 we have that y, z /∈ dom(Γ′′) ∪ {x}. Then Γ′′ = Γ′ and ∆ = z : Ns; y : Nu.
From Φyz, Φu, Φs and Lemma 6.1 we obtain Φus ▷∆u ⊎∆s ⊢ us : M and construct Φt0

as:

Φt0 =
Φ′ ▷ Γ′;x : M ⊢ t : σ Φus ▷∆u ⊎∆s ⊢ us : M

Γ′ ⊎∆u ⊎∆s ⊢ t[x/us] : σ

• If t0 = (λx.t)u →dB t[x/u] = t1. Then Φt1 is of the form

Φt ▷ Γ′;x : M ⊢ t : σ Φu ▷ Γu ⊢ u : M
Γ′ ⊎ Γu ⊢ t[x/u] : σ

(cut)

Therefore, we construct Φt0 as follows:

Φt ▷ Γ′;x : M ⊢ t : σ

Γ′ ⊢ λx.t : M → σ
(abs)

Φu ▷ Γu ⊢ u : M
Γ′ ⊎ Γu ⊢ (λx.t)u : σ

(app)

• t0 = N⟨⟨x⟩⟩[x/λy.p] →spl LL⟨N⟨⟨x⟩⟩[x//λy.p′]⟩ = t1, where λy.z[z/p] ⇓st λy.LL⟨p′⟩. By
subject expansion for →π, there is Φt′1

▷ Γ ⊢ N⟨⟨x⟩⟩[x//λy.LL⟨p′⟩] : σ and it is of the form

Φ▷ Γ′;x : N ⊢ N⟨⟨x⟩⟩ : σ
(Φi ▷∆i ⊢ λy.LL⟨p′⟩ : σi)i∈I

∆ ⊢ λy.LL⟨p′⟩ : N
(many)

Γ′ ⊎∆ ⊢ N⟨⟨x⟩⟩[x//λy.LL⟨p′⟩] : σ
(cut)

where ∆ = ⊎i∈I∆i and N = [σi]i∈I where, by Lemma 6.6, N ≠ [ ]. Then, for each i ∈ I
we have by subject expansion for →sub (of which →st is a subrelation) that Φ′

i ▷∆i ⊢
λy.z[z/p] : σi which has two different shapes, depending on σi.
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(1) If σi = Mi → τi then Φ′
i is of the form

z : [τi] ⊢ z : τi
(ax)

Φi
p ▷∆i; y : Mi ⊢ p : τi

∆i; y : Mi ⊢ z[z/p] : τi
(cut)

∆i ⊢ λy.z[z/p] : Mi → τi
(abs)

Therefore we have Ψi of the form

Φi
p ▷∆i; y : Mi ⊢ p : τi

∆i ⊢ λy.p : Mi → τi
(abs)

(2) If σi = a then ∆i = ∅ and we obtain Ψi of the form
⊢ λy.p : a

(ans) .

We can then construct Φt0 as follows

Φ▷ Γ′;x : N ⊢ N⟨⟨x⟩⟩ : σ
(Ψi ▷∆i ⊢ λy.p : σi)i∈I

∆ ⊢ λy.p : N
(many)

Γ′ ⊎∆ ⊢ N⟨⟨x⟩⟩[x/λy.p] : σ
(cut)

• t0 = N⟨⟨x⟩⟩[x//v] →ls N⟨⟨v⟩⟩[x//v] = t1. Then Φt1 is of the form

Φ▷ Γ′;x : N ′ ⊢ N⟨⟨v⟩⟩ : σ Φ′
v ▷∆′ ⊢ v : N ′

Γ′ ⊎∆′ ⊢ N⟨⟨v⟩⟩[x//v] : σ
(cut)

By Lemma 6.14 ∃Γ′′, ∃∆′′, ∃N ′′, ∃Φ′, ∃Φ′′
v s.t. Γ′;x : N = Γ′′ ⊎∆′, Φ′ ▷ Γ′′ ⊎ x : N ′′ ⊢

N⟨⟨x⟩⟩ : σ and Φ′′
v ▷ ∆′′ ⊢ v : N ′′. From x /∈ fv(v) and the Relevance Lemma 5.1 we

have that x /∈ dom(∆′′). Thus Γ′′ = Γ′′′;x : N ′ and then Γ′′ ⊎ x : N ′ = Γ′′′;x : N where
N = N ′⊔N ′′. From Φ′

v and Φ′′
v derivations we obtain Φv▷∆ ⊢ v : N , where ∆ = ∆′⊎∆′′.

Then Φt0 is of the form

Φ′ ▷ Γ′′′;x : N ⊢ N⟨⟨x⟩⟩ : σ Φv ▷∆ ⊢ v : N
Γ′′′ ⊎∆ ⊢ N⟨⟨x⟩⟩[x//v] : σ

(cut)

where Γ′′′ ⊎∆ = Γ′ ⊎∆′.

Theorem 6.17 (name-Normalization implies Typability). Let t be a term. If t is name-
normalizing, then t is ∩R-typable.

Proof. Let t be name-normalizing. Then t →n
name u and u is a name-nf. We reason by

induction on n. If n = 0, then t = u is typable by Corollary 6.13. Otherwise, we have
t →name t′ →n−1

name u. By the i.h. t′ is typable and thus by Lemma 6.16 (because →nsub is
included in →sub), t turns out to be also typable.

Theorem 6.18 (flneed-Normalization implies Typability). Let t be a term. If t is flneed-
normalizing, then t is ∩R-typable.

Proof. Similar to the previous proof but using Lemma 6.11 instead of Corollary 6.13.

Summing up, Theorems 6.9, 6.17, 6.10 and 6.18 give:

Theorem 6.19. t ∈ TR is name-normalizing iff t is flneed-normalizing iff t is ∩R-typable.

All the technical tools are now available to conclude observational equivalence between
our two evaluation strategies based on node replication. Let R be any reduction notion
on TR. Then, two terms t, u ∈ TR are said to be R-observationally equivalent, written
t ≡R u, if for any context C, C⟨t⟩ is R-normalizing iff C⟨u⟩ is R-normalizing.
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Theorem 6.20. For all terms t, u ∈ TR, t and u are name-observationally equivalent iff t
and u are flneed-observationally equivalent.

Proof. The proof uses Theorem 6.19. Indeed, we have t ≡name u iff (C⟨t⟩ is name-normalizing
iff C⟨u⟩ is name-normalizing for any context C) iff (C⟨t⟩ is flneed-normalizing iff C⟨u⟩ is
flneed-normalizing for any context C) iff t ≡flneed u.

7. Related Works and Conclusion

Several calculi with explicit substitutions (ES) bridge the gap between formal higher-order
calculi and concrete implementations of programming languages (see a survey in [Kes07]).
The first of such calculi, e.g. [ACCL90, BR95], were all based on structural substitution,
in the sense that the ES operator is syntactically propagated step-by-step through the
term structure until a variable is reached, when the substitution finally takes place. The
correspondence between ES and Linear Logic Proof-Nets [DCKP03] led to the more recent
notion of calculi at a distance [AK10, ABKL14, Acc18a], enlightening a natural and new
application of the Curry-Howard interpretation. These calculi implement linear/partial
substitution at a distance, where the search of variable occurrences is abstracted out with
context-based rewriting rules, and thus no ES propagation rules are necessary. A third model
was introduced by the seminal work of Gundersen, Heijltjes, and Parigot [GHP13a, GHP13b],
introducing the atomic λ-calculus to implement node replication.

Inspired by the last approach we introduced the calculus λR, capturing the essence of
node replication. In contrast to [GHP13a], we work with an implicit (structural) mechanism
of weakening and contraction, a design choice which aims at focusing and highlighting
the node replication model, which is the core of our calculus, so that we obtain a rather
simple and natural formalism used in particular to specify evaluation strategies. Indeed,
besides the proof of the main operational meta-level properties of our calculus (confluence,
termination of the substitution calculus, simulations), we use linear and non-linear versions
of λR to specify evaluation strategies based on node replication, namely call-by-name
and call-by-need evaluation strategies. In particular, we provided simple tools to prove
correctness of these reduction strategies. This was achieved in the framework of our concise
calculus λR, based not only on an implicit treatment of weakening and contraction, but
also on the notion of commuting conversions by means of distance. Indeed, the treatment
of weakening, contraction, and commuting conversions result in a heavy machinery for the
atomic λ-calculus, which would make the correctness of these strategies much more involved.

Moreover, characterisation of termination of different strategies based on λR were
achieved with a rather standard type system and, surprisingly, no deep inference system was
necessary at this point. This is of interest, since our type system is equipping full-laziness
with a well-known denotational semantics. We think that this would be difficult to achieve
in the framework of the atomic λ-calculus.

The first description of call-by-need was given by Wadsworth [Wad71], where reduction
is performed on graphs instead of terms. Weak call-by-need on terms was then introduced
by Ariola and Felleisen [AF97], and by Maraist, Odersky and Wadler [MOW98, MOTW99].
Reformulations were introduced by Accattoli, Barenbaum and Mazza [ABM14] and by Chang
and Felleisen [CF12]. Our call-by-need strategy is inspired by the calculus in [ABM14],
which uses the distance paradigm [AK10] to gather together meaningful and permutation
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rules, by clearly separating multiplicative from exponential rules, in the sense of Linear
Logic [Gir87].

Full laziness has been formalized in different ways. Pointer graphs [Wad71, SW10] are
DAGs allowing for an elegant representation of sharing. Labeled calculi [Lév78, BLM05]
implement pointer graphs by adding annotations to λ-terms, which makes the syntax more
difficult to handle. Lambda-lifting [Hug83, Jon87] implements full laziness by resorting to
translations from λ-terms to supercombinators. In contrast to all the previous formalisms,
our calculus is defined on standard λ-terms with explicit cuts, without the use of any
complementary syntactical tool. So is Ariola and Felleisen’s call-by-need [AF97], however,
their notion of full laziness relies on external (ad-hoc) meta-level operations used to extract
the skeleton. Our specification of call-by-need enables fully lazy sharing, where the skeleton
extraction operation is internally encoded in the term calculus operational semantics. Last
but not least, our calculus has strong links with proof-theory, notably deep inference.

Balabonski [Bal12b, Bal12a] relates many formalisms of full laziness and shows that
they are equivalent when considering the number of β-steps to a normal form. It would then
be interesting to understand if his unified approach, (abstractly) stated by means of the
theory of residuals [Lév78, Lév80], applies to our own strategy.

We have also studied the calculus from a semantical point of view, by means of inter-
section types. Indeed, the type system can be seen as a model of our implementations of
call-by-name and call-by-need, in the sense that typability and normalization turn out to be
equivalent.

Intersection types go back to [CD78] and have been used to provide characterizations
of qualitative [BDS13] as well as quantitative [dC07] models of the λ-calculus, where
typability and normalization coincide. Quantitative models specified by means of non-
idempotent types [Gar94, Kfo00] were first applied to the λ-calculus (see a survey in [BKV17])
and to several other formalisms ever since, such as call-by-value [Ehr12, CG14], call-by-
need [Kes16, AGL19], call-by-push-value [GM18, BKRV20] and classical logic [KV20]. In
the present work, we achieve for the first time a quantitative characterization of fully lazy
normalization, which provides upper bounds for the length of reduction sequences to normal
forms.

Characterizations provided by intersection type systems sometimes lead to observational
equivalence results (e.g. [Kes16]). In this work we succeed to prove observational equivalence
related to a fully lazy implementation of weak call-by-need, a result which would be extremely
involved to prove by means of syntactical tools of rewriting, as done for weak call-by-need
in [AF97]. Moreover, our result implies that our node replication implementation of full
laziness is observationally equivalent to standard call-by-name and to weak call-by-need
(see [Kes16]), as well as to the more semantical notion of neededness (see [KRV18]).

A Curry-Howard interpretation of the logical switch rule of deep inference is given
in [She19, SHGP20] as an end-of-scope operator, thus introducing the spinal atomic λ-
calculus. The calculus implements a refined optimization of call-by-need, where only the
spine of the abstraction (tighter than the skeleton) is duplicated. It would be interesting to
adapt λR to spine duplication by means of an appropriate end-of-scope operator, such as
the one in [HvO03]. Further optimizations might also be considered.

Finally, this paper only considers weak evaluation strategies, i.e. with reductions
forbidden under abstractions, but it would be interesting to extend our notions to full
(strong) evaluations too [GL02, BBBK17]. Extending full laziness to classical logic would
be another interesting research direction, possibly taking preliminary ideas from [He18].
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We would also like to investigate (quantitative) tight types for our fully lazy strategy, as
done for weak call-by-need in [AGL19], which does not seem evident in our node replication
framework.
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Appendix A. Proofs

Lemma 2.5. Let x ̸= z, t ∈ TR and p ∈ TP :

(1) If z /∈ fv(p), then lvz(t{x/p}) = lvz(t).
(2) If z ∈ fv(p), then lvz(t{x/p}) = max(lvz(t), lvx(t)).

Proof. If x /∈ fv(t), then t{x/p} = t and the property holds in both cases since lvx(t) = 0.
Let x ∈ fv(t). We show the two cases.

(1) z /∈ fv(p). We reason by induction on t.
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• If t = x, then lvz(x{x/p}) = lvz(p) = 0 = lvz(x).
• If t = λy.t′, then lvz((λy.t

′){x/p}) = lvz(λy.t
′{x/p}) = lvz(t

′{x/p}) =i.h. lvz(t
′) =

lvz(λy.t
′).

• If t = t1t2, then lvz((t1t2){x/p}) = lvz(t1{x/p}t2{x/p}). Then, lvz((t1t2){x/p}) =
max(lvz(t1{x/p}), lvz(t2{x/p})) =i.h. max(lvz(t1), lvz(t2)) = lvz(t1t2).

• If t = t′[y ◁ u], then t{x/p} = t′{x/p}[y ◁ u{x/p}]. There are two cases.
– If z /∈ fv(u{x/p}), that is z /∈ fv(u), then lvz(t

′{x/p}[y◁u{x/p}]) = lvz(t
′{x/p}) =i.h.

lvz(t
′) = lvz(t

′[y ◁ u]).
– Otherwise, lvz(t

′{x/p}[y◁u{x/p}]) = max(lvz(t
′{x/p}), lvy(t′{x/p})+lvz(u{x/p})+

ES([y ◁ u])) =i.h. max(lvz(t
′), lvy(t

′) + lvz(u) + ES([y ◁ u])) = lvz(t
′[y ◁ u]).

(2) z ∈ fv(p). By induction on t.
• If t = x, then t{x/p} = p and

lvz(t{x/p}) = lvz(p) = 0 = max(0, 0) = max(lvz(x), lvx(x)).

• If t = λy.t′, then t{x/p} = λy.t′{x/p} and

lvz(λy.t
′{x/p}) = lvz(t

′{x/p}) =i.h. max(lvz(t
′), lvx(t

′)) = max(lvz(λy.t
′), lvx(λy.t

′)).

• If t = t1t2 then t{x/p} = t1{x/p}t2{x/p}. For i ∈ {1, 2}, one has either lvz(ti{x/p}) =
max(lvz(ti), lvx(ti)) by i.h. if x ∈ fv(ti), or lvz(ti{x/p}) = lvz(ti) by Point 1 otherwise.
– If x ∈ fv(t1) ∩ fv(t2) then,

lvz(t{x/p}) = max(lvz(t1{x/p}), lvz(t2{x/p}))
=i.h. max(max(lvz(t1), lvx(t1)),max(lvz(t2), lvx(t2)))

= max(lvz(t1), lvx(t1), lvz(t2), lvx(t2))

= max(max(lvz(t1), lvz(t2)),max(lvx(t1), lvx(t2)))

= max(lvz(t1t2), lvx(t1t2))

– If x /∈ fv(t2), then

lvz(t{x/p}) = max(lvz(t1{x/p}), lvz(t2{x/p}))
=i.h.+P.1 max(max(lvz(t1), lvx(t1)), lvz(t2))

= max(lvz(t1), lvx(t1), lvz(t2))

= max(max(lvz(t1), lvz(t2)),max(lvx(t1), 0))

= max(lvz(t1t2), lvx(t1t2))

– If x /∈ fv(t1) the case is as above.
• If t = t1[y ◁ t2] then t{x/p} = t1{x/p}[y ◁ t2{x/p}]. By α-conversion we can assume
y /∈ fv(p). By i.h. one has lvz(ti{x/p}) = max(lvz(ti), lvx(ti)) for i ∈ {1, 2}, if
x ∈ fv(ti), lvz(ti{x/p}) = lvz(ti) otherwise. There are two cases.
(a) If z /∈ fv(t2{x/p}) then z /∈ fv(t2) and necessarily x /∈ fv(t2) since z ∈ fv(p).

Therefore,

lvz(t{x/p}) = lvz(t1{x/p})
=i.h. max(lvz(t1), lvx(t1))

= max(lvz(t1[y ◁ t2]), lvx(t1[y ◁ t2]))

(b) If z ∈ fv(t2{x/p}) then,
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(i) If x /∈ fv(t1), then x ∈ fv(t2).

lvz(t{x/p}) = max(lvz(t1{x/p}), lvy(t1{x/p}) + lvz(t2{x/p}) + ES([y ◁ t2]))

=P.1 max(lvz(t1), lvy(t1) + lvz(t2{x/p}) + ES([y ◁ t2]))

=i.h. max(lvz(t1), lvy(t1) + max(lvz(t2), lvx(t2)) + ES([y ◁ t2]))

= max(lvz(t1), lvy(t1) + lvz(t2) + ES([y ◁ t2]), lvy(t1) + lvx(t2) + ES([y ◁ t2]))

=


max(max(lvz(t1), lvy(t1) + lvz(t2) + ES([y ◁ t2])),

lvy(t1) + lvx(t2) + ES([y ◁ t2])) z ∈ fv(t2)

max(lvz(t1), lvy(t1) + lvx(t2) + ES([y ◁ t2])) z /∈ fv(t2)

= max(lvz(t1[y ◁ t2]), lvx(t1[y ◁ t2]))

(ii) If x /∈ fv(t2), then x ∈ fv(t1) and z ∈ fv(t2):

lvz(t{x/p}) = max(lvz(t1{x/p}), lvy(t1{x/p}) + lvz(t2{x/p}) + ES([y ◁ t2]))

=i.h.+P.1 max(lvz(t1), lvx(t1), lvy(t1) + lvz(t2) + ES([y ◁ t2]))

= max(max(lvz(t1), lvy(t1) + lvz(t2) + ES([y ◁ t2])), lvx(t1[y ◁ t2]))

= max(lvz(t1[y ◁ t2]), lvx(t1[y ◁ t2]))

(iii) If x ∈ fv(t1) ∩ fv(t2):

lvz(t{x/p}) = max(lvz(t1{x/p}), lvy(t1{x/p}) + lvz(t2{x/p}) + ES([y ◁ t2]))

=i.h. max(max(lvz(t1), lvx(t1)), lvy(t1) + max(lvz(t2), lvx(t2)) + ES([y ◁ t2]))

= max(lvz(t1), lvx(t1), lvy(t1) + lvz(t2) + ES([y ◁ t2]),

lvy(t1) + lvx(t2) + ES([y ◁ t2]))

=


max(lvz(t1), lvy(t1) + lvz(t2) + ES([y ◁ t2]),

lvx(t1), lvy(t1) + lvx(t2) + ES([y ◁ t2])) z ∈ fv(t2)

max(lvz(t1), lvx(t1), lvy(t1) + lvx(t2) + ES([y ◁ t2])) z /∈ fv(t2)

= max(lvz(t1[y ◁ t2]), lvx(t1[y ◁ t2]))

Lemma 2.6. Let t ∈ TR and w be any variable.

(1) If t0 →π t1, then lvw(t0) ≥ lvw(t1).
(2) If t0 →sub t1, then lvw(t0) ≥ lvw(t1).

Proof.

(1) Let t0 = C⟨o⟩ and t1 = C⟨o′⟩, where o →π o′ is a root step. We reason by induction on C.
First we consider the base cases, where C = ♢.
• t0 = λy.t[x ◁ u] →π (λy.t)[x ◁ u] = t1, where y /∈ fv(u). We have two cases:

(a) If w /∈ fv(u).

lvw(λy.t[x ◁ u]) = lvw(t[x ◁ u]) = lvw(t) = lvw(λy.t) = lvw((λy.t)[x ◁ u])
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(b) If w ∈ fv(u).

lvw(λy.t[x ◁ u]) = lvw(t[x ◁ u])

= max(lvw(t), lvx(t) + lvw(u) + ES([x ◁ u]))

= max(lvw(λy.t), lvx(λy.t) + lvw(u) + ES([x ◁ u]))

= lvw((λy.t)[x ◁ u])

• t0 = t[x ◁ u]s →π (ts)[x ◁ u] = t1, where x /∈ fv(s). We have two cases:
(a) If w /∈ fv(u).

lvw(t[x ◁ u]s) = max(lvw(t[x ◁ u]), lvw(s))

= max(lvw(t), lvw(s))

= lvw(ts)

= lvw((ts)[x ◁ u])

(b) If w ∈ fv(u).

lvw(t[x ◁ u]s)

= max(lvw(t[x ◁ u]), lvw(s))

= max(lvw(t), lvx(t) + lvw(u) + ES([x ◁ u]), lvw(s))

= max(lvw(t), lvw(s), lvx(t) + lvw(u) + ES([x ◁ u]))

= max(lvw(t), lvw(s),max(lvx(t), 0) + lvw(u) + ES([x ◁ u])) (x /∈ fv(s))

= max(lvw(t), lvw(s),max(lvx(t), lvx(s)) + lvw(u) + ES([x ◁ u]))

= max(lvw(ts), lvx(ts) + lvw(u) + ES([x ◁ u]))

= lvw((ts)[x ◁ u])

• t0 = ts[x ◁ u] →π (ts)[x ◁ u] = t1, where x /∈ fv(t). We have two cases:
(a) If w /∈ fv(u).

lvw(ts[x ◁ u]) = max(lvw(t), lvw(s[x ◁ u]))

= max(lvw(t), lvw(s))

= lvw(ts)

= lvw((ts)[x ◁ u])

(b) If w ∈ fv(u).

lvw(ts[x ◁ u]) = max(lvw(t), lvw(s[x ◁ u]))

= max(lvw(t), lvw(s), lvx(s) + lvw(u) + ES([x ◁ u]))

= max(lvw(t), lvw(s),max(0, lvx(s)) + lvw(u) + ES([x ◁ u]))

= max(lvw(t), lvw(s),max(lvx(t), lvx(s)) + lvw(u) + ES([x ◁ u]))

= max(lvw(ts), lvx(ts) + lvw(u) + ES([x ◁ u]))

= lvw((ts)[x ◁ u])

• Let t0 = t[y ◁ s[x ◁ u]] →π t[y ◁ s][x ◁ u] = t1, where x /∈ fv(t). We have four cases:
(a) If w /∈ fv(s) ∪ fv(u):

lvw(t[y ◁ s[x ◁ u]]) = lvw(t) = lvw(t[y ◁ s]) = lvw(t[y ◁ s][x ◁ u])
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(b) If w ∈ fv(s), w /∈ fv(u):

lvw(t[y ◁ s[x ◁ u]]) = max(lvw(t), lvy(t) + lvw(s[x ◁ u]) + ES([y ◁ s]))

= max(lvw(t), lvy(t) + lvw(s) + ES([y ◁ s]))

= lvw(t[y ◁ s])

= lvw(t[y ◁ s][x ◁ u])

(c) If w /∈ fv(s), w ∈ fv(u).

lvw(t[y ◁ s[x ◁ u]])

= max(lvw(t), lvy(t) + lvw(s[x ◁ u]) + ES([y ◁ s]))

= max(lvw(t), lvy(t) + lvx(s) + lvw(u) + ES([x ◁ u]) + ES([y ◁ s]))

≥ max(lvw(t[y ◁ s]), lvx(t[y ◁ s]) + lvw(u) + ES([x ◁ u]))

= lvw(t[y ◁ s][x ◁ u])

(d) If w ∈ fv(s) ∩ fv(u):

lvw(t[y ◁ s[x ◁ u]])
= max(lvw(t), lvy(t) + lvw(s[x ◁ u]) + ES([y ◁ s]))
= max(lvw(t), lvy(t) + max(lvw(s), lvx(s) + lvw(u) + ES([x ◁ u])) + ES([y ◁ s]))
= max(lvw(t), lvy(t) + lvw(s) + ES([y ◁ s]),

lvy(t) + lvx(s) + lvw(u) + ES([x ◁ u]) + ES([y ◁ s]))
= max(max(lvw(t), lvy(t) + lvw(s) + ES([y ◁ s])),

max(lvx(t), lvy(t) + lvx(s) + ES([y ◁ s])) + lvw(u) + ES([x ◁ u]))
≥ max(lvw(t[y ◁ s]), lvx(t[y ◁ s]) + lvw(u) + ES([x ◁ u]))
= lvw(t[y ◁ s][x ◁ u])

The inductive cases are the following:
• If C = λx.C′, where x ̸= w, then lvw(λx.C

′⟨o⟩) = lvw(C
′⟨o⟩) ≥i.h. lvw(C

′⟨o′⟩) =
lvw(C⟨o′⟩).

• If C = C′u, then lvw(C
′⟨o⟩u) = max(lvw(C

′⟨o⟩), lvw(u)) ≥i.h. max(lvw(C
′⟨o′⟩), lvw(u)) =

lvw(C⟨o′⟩).
• If C = uC′, then lvw(uC

′⟨o⟩) = max(lvw(u), lvw(C
′⟨o⟩)) ≥i.h. max(lvw(u), lvw(C

′⟨o′⟩)) =
lvw(C⟨o′⟩).

• If C = C′[x ◁ u], then
(a) If w /∈ fv(u), then lvw(C

′⟨o⟩[x ◁ u]) = lvw(C
′⟨o⟩) ≥i.h. lvw(C

′⟨o′⟩) = lvw(C⟨o′⟩).
(b) If w ∈ fv(u), then lvw(C

′⟨o⟩[x◁u]) = max(lvw(C
′⟨o⟩), lvx(C′⟨o⟩)+ lvw(u)+ES([x◁

u])) ≥i.h. max(lvw(C
′⟨o′⟩), lvx(C′⟨o′⟩)+ lvw(u)+ES([x◁u])) = lvw(C

′⟨o′⟩[x◁u]) =
lvw(C⟨o′⟩).

• If C = u[x ◁ C′], then
(a) If w /∈ fv(C′⟨o⟩), then lvw(u[x ◁ C′⟨o⟩]) = lvw(u) = lvw(u[x ◁ C′⟨o′⟩]) = lvw(C⟨o′⟩).
(b) If w ∈ fv(C′⟨o⟩), then lvw(u[x◁C

′⟨o⟩]) = max(lvw(u), lvx(u)+ lvw(C
′⟨o⟩)+ES([x◁

C′⟨o⟩])) ≥i.h. max(lvw(u), lvx(u)+lvw(C
′⟨o′⟩)+ES([x◁C′⟨o⟩])) = lvw(u[x◁C

′⟨o′⟩]) =
lvw(C⟨o′⟩).

(2) We reason by induction on the reduction relation, i.e. by induction on the context
C where the root reduction takes place. We detail the base case which is C = ♢.
In all such cases we use Point 1 to push L outside, i.e. we can write t0 →sub t1 as
t0 →π L⟨t′0⟩ →sub′ L⟨t′1⟩ = t1, where t′0 →sub′ t

′
1 does not push any list context outside.

We then show the property for steps t′0 →sub′ t
′
1 not pushing any substitution outside



Vol. 20:1 NODE REPLICATION: THEORY AND PRACTICE 5:49

and we conclude by lvw(t0) ≥P.1 lvw(L⟨t′0⟩) ≥ lvw(L⟨t′1⟩) = lvw(t1). The inductive cases
for C are treated as in Point 1.
• t′0 = t[x/us] →app t{x/yz}[y/u][z/s] = t′1, where y and z are fresh variables.

(a) If w /∈ fv(us) (i.e. w /∈ fv(u) and w /∈ fv(s)):

lvw(t[x/us]) = lvw(t)

=L.2.5:1 lvw(t{x/yz})
= lvw(t{x/yz}[y/u])
= lvw(t{x/yz}[y/u][z/s])

(b) If w ∈ fv(u) and w /∈ fv(s). There are two cases.
(i) If x /∈ fv(t):

lvw(t[x/us]) = max(lvw(t), lvx(t) + lvw(us) + 1)

= max(lvw(t), lvx(t) + lvw(u) + 1)

= max(lvw(t), 0 + lvw(u) + 1)

= max(lvw(t), lvy(t) + lvw(u) + 1)

=L.2.5:1 max(lvw(t), lvy(t{x/yz}) + lvw(u) + 1)

=L.2.5:1 max(lvw(t{x/yz}), lvy(t{x/yz}) + lvw(u) + 1)

= lvw(t{x/yz}[y/u])
= lvw(t{x/yz}[y/u][z/s])

(ii) If x ∈ fv(t):

lvw(t[x/us]) = max(lvw(t), lvx(t) + lvw(us) + 1)

= max(lvw(t), lvx(t) + lvw(u) + 1)

= max(lvw(t), lvx(t) + 0 + lvw(u) + 1)

= max(lvw(t),max(0, lvx(t) + 0) + lvw(u) + 1)

= max(lvw(t),max(lvy(t), lvx(t) + lvy(yz)) + lvw(u) + 1)

=L.2.5:2 max(lvw(t), lvy(t{x/yz}) + lvw(u) + 1)

=L.2.5:1 max(lvw(t{x/yz}), lvy(t{x/yz}) + lvw(u) + 1)

= lvw(t{x/yz}[y/u])
= lvw(t{x/yz}[y/u][z/s])

(c) If w /∈ fv(u) and w ∈ fv(s). There are two cases.
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(i) If x /∈ fv(t):

lvw(t[x/us]) = max(lvw(t), lvx(t) + lvw(us) + 1)

= max(lvw(t), lvx(t) + lvw(s) + 1)

= max(lvw(t), 0 + lvw(s) + 1)

= max(lvw(t), lvz(t) + lvw(s) + 1)

=L.2.5:1 max(lvw(t), lvz(t{x/yz}) + lvw(s) + 1)

=L.2.5:1 max(lvw(t{x/yz}), lvz(t{x/yz}) + lvw(s) + 1)

= max(lvw(t{x/yz}[y/u]), lvz(t{x/yz}[y/u]) + lvw(s) + 1)

= lvw(t{x/yz}[y/u][z/s])

(ii) If x ∈ fv(t):

lvw(t[x/us]) = max(lvw(t), lvx(t) + lvw(us) + 1)

= max(lvw(t), lvx(t) + lvw(s) + 1)

= max(lvw(t), lvx(t) + 0 + lvw(s) + 1)

= max(lvw(t),max(0, lvx(t) + 0) + lvw(s) + 1)

= max(lvw(t),max(lvz(t), lvx(t) + lvz(yz)) + lvw(s) + 1)

=L.2.5:2 max(lvw(t), lvz(t{x/yz}) + lvw(s) + 1)

=L.2.5:1 max(lvw(t{x/yz}), lvz(t{x/yz}) + lvw(s) + 1)

= max(lvw(t{x/yz}[y/u]), lvz(t{x/yz}[y/u]) + lvw(s) + 1)

= lvw(t{x/yz}[y/u][z/s])

(d) If w ∈ fv(u) and w ∈ fv(s). There are two cases.
(i) If x /∈ fv(t):

lvw(t[x/us])

= max(lvw(t), lvx(t) + lvw(us) + 1)

= max(lvw(t), lvx(t) + max(lvw(u), lvw(s)) + 1)

= max(lvw(t),max(lvw(u), lvw(s)) + 1))

= max(lvw(t), lvw(u) + 1, lvw(s) + 1)

= max(lvw(t), lvy(t) + lvw(u) + 1, lvz(t) + lvw(s) + 1)

=L.2.5:1 max(lvw(t{x/yz}), lvy(t{x/yz}) + lvw(u) + 1, lvz(t{x/yz}) + lvw(s) + 1)

= max(lvw(t{x/yz}), lvy(t{x/yz}) + lvw(u) + 1, lvz(t{x/yz}[y/u]) + lvw(s) + 1)

= max(lvw(t{x/yz}[y/u]), lvz(t{x/yz}[y/u]) + lvw(s) + 1)

= lvw(t{x/yz}[y/u][z/s])
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(ii) If x ∈ fv(t):

lvw(t[x/us])

= max(lvw(t), lvx(t) + lvw(us) + 1)

= max(lvw(t), lvx(t) + lvw(u) + 1, lvx(t) + lvw(s) + 1)

= max(lvw(t), lvx(t) + lvw(u) + 1,max(0, lvx(t) + 0) + lvw(s) + 1)

= max(lvw(t), lvx(t) + lvw(u) + 1,max(lvz(t), lvx(t) + lvz(yz)) + lvw(s) + 1)

=L.2.5:2 max(lvw(t), lvx(t) + lvw(u) + 1, lvz(t{x/yz}) + lvw(s) + 1)

= max(lvw(t),max(0, lvx(t) + 0) + lvw(u) + 1, lvz(t{x/yz}) + lvw(s) + 1)

= max(lvw(t),max(lvy(t), lvx(t) + lvy(yz)) + lvw(u) + 1, lvz(t{x/yz}) + lvw(s) + 1)

=L.2.5:2 max(lvw(t), lvy(t{x/yz}) + lvw(u) + 1, lvz(t{x/yz}) + lvw(s) + 1)

= max(lvw(t{x/yz}), lvy(t{x/yz}) + lvw(u) + 1, lvz(t{x/yz}) + lvw(s) + 1)

= max(lvw(t{x/yz}[y/u]), lvz(t{x/yz}) + lvw(s) + 1)

= max(lvw(t{x/yz}[y/u]), lvz(t{x/yz}[y/u]) + lvw(s) + 1)

= lvw(t{x/yz}[y/u][z/s])

• t′0 = t[x/λy.u] →dist t[x//λy.z[z/u]] = t′1. There are two cases.
(a) w /∈ fv(λy.u):

lvw(t[x/λy.u]) = lvw(t) = lvw(t[x//λy.z[z/u]])

(b) w ∈ fv(λy.u) (i.e. w ∈ fv(u) and w ̸= y)

lvw(t[x/λy.u]) = max(lvw(t), lvx(t) + lvw(λy.u) + 1)

= max(lvw(t), lvx(t) + lvw(u) + 1)

= max(lvw(t), lvx(t) + max(0, 0 + lvw(u) + 1))

= max(lvw(t), lvx(t) + max(lvw(z), lvz(z) + lvw(u) + 1))

= max(lvw(t), lvx(t) + lvw(z[z/u]))

= max(lvw(t), lvx(t) + lvw(λy.z[z/u]))

= lvw(t[x//λy.z[z/u]])

• t′0 = t[x//λy.u] →abs t{x/λy.u} = t′1, where u is pure. There are two cases:
(a) If w /∈ fv(λy.u) or x /∈ fv(t):

lvw(t[x//λy.u]) = lvw(t) =L.2.5.1 lvw(t{x/λy.u′}) = lvw(L⟨t{x/λy.u′}⟩)

(b) If w ∈ fv(λy.u) and x ∈ fv(t):

lvw(t[x//λy.u]) = max(lvw(t), lvx(t)) =L.2.5.2 lvw(t{x/λy.u})

• t′0 = t[x/y] →var t{x/y} = t′1.
(a) If w ̸= y:

lvw(t[x/y]) = lvw(t) =L.2.5.1 lvw(t{x/y})
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(b) If w = y and x /∈ fv(t):

lvw(t[x/y]) = max(lvw(t), lvx(t) + lvw(y) + 1)

= max(lvw(t), 1)

≥ lvw(t)

=L.2.5.1 lvw(t{x/y})

(c) If w = y and x ∈ fv(t):

lvw(t[x/y]) = max(lvw(t), lvx(t) + lvw(y) + 1)

≥ max(lvw(t), lvx(t))

=L.2.5.2 lvw(t{x/y})

Lemma 3.5. Let t be a term, x a variable and p a pure term. Let K = lvx(t). Then there

is N ∈ N such that CL (t{x/p}) ⊑ CL (t)b ⊔ CL (t)>K
a ⊔ [a(k, n) | k ≤ K and n ≤ N ].

Proof. By induction on t. In this proof, fst(o) denotes the first element of an object o ∈ O:
fst(a(k, n)) = k and fst(b(k)) = k. If a(k, n) ∈ O we also define snd(a(k, n)) = n.

• If t = y, then CL (y) = CL (y{x/p}) = [ ] so the property is straightforward for any n ∈ N.
• If t = λy.u, then CL (t{x/p}) = CL (u{x/p}) and lvx(t) = lvx(u). The property trivially
holds by the i.h.

• If t = u1u2, then we have CL (t{x/p}) = CL (u1{x/p}) ⊔ CL (u2{x/p}) and lvx(u1u2) =
max(lvx(u1), lvx(u2)). Let o ∈ CL (t{x/p}) thus o ∈ CL (u1{x/p})⊔CL (u2{x/p}). Suppose
w.l.o.g. that o ∈ CL (u1{x/p}). Let K1 = lvx(u1) ≤ K. By the i.h. we have either (1)

o ∈ CL (u1)b, (2) o ∈ CL (u1)
>K1
a , or (3) o = a(k, n) where k ≤ K1 and n ≤ N1 for some

N1 ∈ N. If (1) holds, then o ∈ CL (t)b and we are done. Otherwise, o = a(k, n), and we
consider two cases.
– If k > K, then (2) implies o ∈ CL (u1)

>K
a which implies o ∈ CL (t)>K

a while (3) implies
k ≤ K which leads to a contradiction.

– If k ≤ K, we are done.
Considering that o ∈ CL (u2{x/p}) we have a similar result for some N2 ∈ N. We thus
have the result for N = max(N1, N2).

• If t = u1[y/u2], then we can assume by α-conversion that y /∈ fv(p). Therefore,

CL (t) = CL (u1) ⊔ (lvy(u1) + 1) · CL (u2) ⊔ [a(lvy(u1) + 1, |u2|)] and
CL (t{x/p}) = CL (u1{x/p}) ⊔ (lvy(u1{x/p}) + 1) · CL (u2{x/p})

⊔ [a(lvy(u1{x/p}) + 1, |u2{x/p}|)]
=L.2.5:1 CL (u1{x/p}) ⊔ (lvy(u1) + 1) · CL (u2{x/p}) ⊔ [a(lvy(u1) + 1, |u2{x/p}|)]

There are two cases:
(1) If x /∈ fv(u2), then lvx(t) = lvx(u1). Moreover, CL (u2{x/p}) = CL (u2) and |u2{x/p}| =

|u2|. Let o ∈ CL (t{x/p}).
– If o ∈ CL (u1{x/p}), then let K1 = lvx(u1) = lvx(t) = K, so that the i.h. gives

either (1) o ∈ CL (u1)b, (2) o ∈ CL (u1)
>K1
a , or (3) o = a(k, n) where k ≤ K1 and

n ≤ N1 for some N1 ∈ N. If (1) holds, then o ∈ CL (t)b and we are done. If (2)

holds, then o ∈ CL (u1)
>K
a since K1 = K, which implies o ∈ CL (t)>K

a and we are
done. Otherwise, (3) holds and k ≤ K1 = K as required.
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– If o ∈ (lvy(u1) + 1) · CL (u2{x/p}) = (lvy(u1) + 1) · CL (u2), then o ∈ CL (t) =

CL (t)b ⊔ CL (t)>K
a ⊔ CL (t)≤K

a , which particularly implies in the last case that

o = a(k, n) and k ≤ K. Note that, since CL (t)≤K
a is finite, we can take N2 =

max{snd(o) | o ∈ CL (t)≤K
a }.

– If o = a(lvy(u1) + 1, |u2{x/p}|) = a(lvy(u1) + 1, |u2|), then o ∈ CL (t) and thus

either o ∈ CL (t)>K or o ∈ CL (t)≤K , which particularly implies in the last case that
fst(o) ≤ K and snd(o) ≤ N2, with N2 defined as above.

The result then holds for N = max(N1, N2).
(2) If x ∈ fv(u2), then lvx(t) = max(lvx(u1), lvy(u1) + lvx(u2) + 1). Let o ∈ CL (t{x/p}).

– If o ∈ CL (u1{x/p}), then let K1 = lvx(u1) = lvx(t) ≤ K, so that the i.h. gives

either (1) o ∈ CL (u1)b, (2) o ∈ CL (u1)
>K1
a , or (3) o = a(k, n) where k ≤ K1 and

n ≤ N1 for some N1 ∈ N. If (1) holds, then o ∈ CL (t)b and we are done. Otherwise
o = a(k, n) and we consider two cases.

∗ If k > K, then (2) implies o ∈ CL (u1)
>K
a , and thus o ∈ CL (t)>K

a , while (3)
implies k ≤ K which leads to a contradiction.

∗ If k ≤ K, then we are done.
– If o ∈ (lvy(u1) + 1) · CL (u2{x/p}), then there is o′ ∈ CL (u2{x/p}) such that

fst(o) = fst(o′) + (lvy(u1) + 1). Let K2 = lvx(u2), so that the i.h. gives either

(1) o′ ∈ CL (u2)b, (2) o′ ∈ CL (u2)
>K2
a , or (3) o′ = a(k, n) where k ≤ K2 and

n ≤ N2 for some N2 ∈ N. If (1) holds, then o ∈ (lvy(u1) + 1) · CL (u2)b, thus
o ∈ CL (t)b and we are done. If (2) holds, then o ∈ (lvy(u1) + 1) · CL (u2)>K2

a and
thus fst(o) > K2 + (lvy(u1) + 1). We consider two cases.

∗ If fst(o) > K ≥ K2 + lvy(u1) + 1, then (2) implies o ∈ CL (t)>K
a while (3) leads

to a contradiction.
∗ If fst(o) ≤ K, then we are done.

– If o = a(lvy(u1) + 1, |u2{x/p}|), then fst(o) = lvy(u1) + 1 ≤ K and snd(o) =
|u2{x/p}|.

The result then holds for N = max(N1, N2, |u2{x/p}|).
• If t = u1[y//u2], the analysis is similar.

Lemma 3.6. Let t ∈ TR. Then t →π t′ implies CL (t) ≥O
MUL CL (t

′).

Proof. Let t = C⟨t0⟩ →π C⟨t1⟩ = t′, where t0 →π t1 is a reduction step at the root position.
We proceed by induction on C. We detail the base case where the context C is ♢, by inspecting
the cases where the explicit cuts are explicit substitutions, as the remaining cases for explicit
distributors are similar.

(1) If t = t0 = λy.t[x/u] →π (λy.t)[x/u] = t1 = t′, where y /∈ fv(u):

CL (t) = CL (t[x/u])

= CL (t) ⊔ (lvx(t) + 1) · CL (u) ⊔ [a(lvx(t) + 1, |u|)]
= CL (λy.t) ⊔ (lvx(λy.t) + 1) · CL (u) ⊔ [a(lvx(λy.t) + 1, |u|)]
= CL

(
t′
)
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(2) If t = t0 = t[x/u]s →π (ts)[x/u] = t1 = t′, where x /∈ fv(s):

CL (t) = CL (t[x/u]) ⊔ CL (s)

= CL (t) ⊔ (lvx(t) + 1) · CL (u) ⊔ CL (s)

= CL (ts) ⊔ (lvx(ts) + 1) · CL (u) ⊔ [a(lvx(ts) + 1, |u|)]
= CL

(
t′
)

(3) If t = t0 = ts[x/u] →π (ts)[x/u] = t1 = t′, where x /∈ fv(t):

CL (t) = CL (t) ⊔ CL (s[x/u])

= CL (t) ⊔ CL (s) ⊔ (lvx(s) + 1) · CL (u) ⊔ [a(lvx(s) + 1, |u|)]
= CL (ts) ⊔ (lvx(ts) + 1) · CL (u) ⊔ [a(lvx(ts) + 1, |u|)]
= CL

(
t′
)

(4) If t = t0 = t[y/s[x/u]] →π t[y/s][x/u] = t1 = t′, where x /∈ fv(t):

CL (t) = CL (t) ⊔ (lvy(t) + 1) · CL (s[x/u]) ⊔ [a(lvy(t) + 1, |s[x/u]|)]
= CL (t) ⊔ (lvy(t) + 1) · (CL (s) ⊔ (lvx(s) + 1) · CL (u) ⊔ [a(lvx(s) + 1, |u|)])
⊔ [a(lvy(t) + 1, |s[x/u]|)]

= CL (t) ⊔ (lvy(t) + 1) · CL (s) ⊔ (lvy(t) + lvx(s) + 2) · CL (u)
⊔ [a(lvy(t) + lvx(s) + 2, |u|), a(lvy(t) + 1, |s[x/u]|)]

= (CL (t) ⊔ (lvy(t) + 1) · CL (s) ⊔ [a(lvy(t) + 1, |s[x/u]|)])
⊔ (lvy(t) + lvx(s) + 2) · CL (u) ⊔ [a(lvy(t) + lvx(s) + 2, |u|)]

>O
MUL (CL (t) ⊔ (lvy(t) + 1) · CL (s) ⊔ [a(lvy(t) + 1, |s|)])
⊔ (lvx(t[y/s]) + 1) · CL (u) ⊔ [a(lvx(t[y/s]) + 1, |u|)]

= CL
(
t′
)

The >O
MUL inequation is justified by the following facts:

• |s[x/u]| > |s|.
• lvy(t) + lvx(s) + 2 = max(0, lvy(t) + lvx(s) + 1) + 1 = lvx(t[y/s]) + 1.

The inductive cases are straightforward.

Proposition 4.4 (Diamond). The CBN strategy enjoys the diamond property, i.e. for any
terms t, u, s ∈ U such that t →name u, t →name s and u ̸= s, there exists t′ such that u →name t

′

and s →name t
′.

Proof. We split the statement above in three different properties, each one proved by
induction on the involved relation relations.

(1) If t →ndB u and t →ndB s, then there exists t′ such that u →ndB t′ and s →ndB t′. We
consider the following cases:
• ((appdb), (appdb)) We then have t = t0t1 such that t →ndB u0t1 = u and t →ndB

s0t1 = s, where t0 →ndB u0 and t0 →ndB s0. By the i.h. there is t′0 such that s0 →ndB t
′
0

and u0 →ndB t
′
0. Therefore s →ndB t

′
0t1 = t′ and u →ndB t

′.
• ((subdb), (subdb)) We then have t = t0[x ◁ t1] such that t →ndB u0[x ◁ t1] = u and
t →ndB s0[x ◁ t1] = s, where t0 →ndB u0 and t0 →ndB s0. By the i.h. there is t′0 such
that s0 →ndB t

′
0 and u0 →ndB t

′
0. Therefore s →ndB t

′
0[x ◁ t1] = t′ and u →ndB t

′.
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• ((db), (db)), ((db), (appdb)), ((db), (subdb)) and ((appdb), (subdb)) are impossible
cases.

(2) If t →nsub u and t →nsub s, then there exists t′ such that u →nsub t
′ and s →nsub t

′. We
consider the following cases:
• ((s), (s)) Impossible since u and s are assumed to be different.
• ((s), (subs)) We have t ∈ U then t = t0[x//λy.LL⟨p⟩[z ◁ t1]], where y /∈ fv(LL) ∪ fv(t1)
and such that t 7→sub LL⟨t0{x/λy.p}⟩[z ◁ t1] = u. There are three cases for t.
– If [z ◁ t1] = [z/L⟨w⟩] or [z ◁ t1] = [z/L⟨p1p2⟩], then the only possibility in each case

is (s) on term LL⟨p⟩[z/t1]. We then have t →nsub t0[x//λy.L
′⟨LL⟨p⟩{z/q}⟩] = s for

some L′ and some pure term q. So that u →nsub L
′⟨LL⟨t0{x/λy.p}⟩{z/q}⟩ = u′ and

s →nsub L
′⟨LL⟨t0{x/λy.p{z/q}}⟩⟩ = s′. The equality u′ = s′ holds because we can

assume z ̸= y by α-equivalence, and z /∈ fv(LL) by definition.
– If [z ◁ t1] = [z/λw.t′1], then the only possible case is (s) on term LL⟨p⟩[z/λw.t′1]. We

then have t = t0[x//λy.LL⟨p⟩[z/λw.t′1]] →nsub t0[x//λy.LL⟨p⟩[z//λw.w′[w′/t′1]]] = s.
And we close the diagram with u →nsub LL⟨t0{x/λy.p}⟩[z//λw.w′[w′/t′1]] = t′ and
s →nsub t

′.
– If [z ◁ t1] = [z//λw.t′1], then we have two different cases:

∗ If the reduction happens inside t′1, then t = t0[x//λy.LL⟨p⟩[z//λw.t′1]] →nsub

t0[x//λy.LL⟨p⟩[z//λw.s1]] = s, where t′1 →nsub s1. Then we close by u →nsub

LL⟨t0{x/λy.p}⟩[z//λw.s1] = t′ and s →nsub t
′.

∗ Otherwise, the (s) case for LL⟨p⟩[z//λw.t′1] gives t →nsub t0[x//λy.L⟨LL⟨p⟩{z/v}⟩] =
s for some L and some value v. So that u →nsub L⟨LL⟨t0{x/λy.p}⟩{z/v}⟩ = u′

and s →nsub L⟨LL⟨t0{x/λy.p{z/v}}⟩⟩ = s′. The equality u′ = s′ holds because we
can assume y /∈ fv(v) ∪ {z} by α-equivalence, and z /∈ fv(LL) by definition.

• ((apps), (apps)) We then have t = t0t1 such that t →nsub u0t1 = u and t →nsub

s0t1 = s, where t0 →nsub u0 and t0 →nsub s0. By the i.h. s0 →nsub t
′
0 and u0 →nsub t

′
0.

Therefore u →nsub t
′
0t1 = t′ and s →nsub t

′.
• ((subs), (subs)) We have t = t0[x//λy.t1] such that t →nsub t0[x//λy.u1] = u and
t →nsub t0[x//λy.s1] = s, where t1 →nsub u1 and t1 →nsub s1. By the i.h. s1 →nsub t′1
and u1 →nsub t

′
1. Therefore u →nsub t0[x//λy.t

′
1] = t′ and s →nsub t

′.
• ((s), (apps)) and ((subs), (apps)) are impossible cases.

(3) If t →ndB u and t →nsub s, then there exists t′ such that u →nsub t′ and s →ndB t′. We
consider the following cases:
• ((db), (apps)) We have t = L⟨λx.t0⟩[y ◁ t2]t1 such that t →ndB L⟨t0[x/t1]⟩[y ◁ t2] = u.
There are three cases for t →nsub s.
– If t = L⟨λx.t0⟩[y//λz.t′2]t1 →nsub L⟨λx.t0⟩[y//λz.t′3]t1 = s, where t2 = λz.t′2 and

t′2 →nsub t
′
3, then u →nsub L⟨t0[x/t1]⟩[y//λz.t′3] = t′ and s →ndB t

′.
– If t = L⟨λx.t0⟩[y/λz.t′2]t1 →nsub L⟨λx.t0⟩[y//λz.w[w/t′2]]t1 = s, where t2 = λz.t′2,

then u →nsub L⟨t0[x/t1]⟩[y//λz.w[w/t′2]] = t′ and s →ndB t
′.

– Otherwise, we have t →nsub L
′⟨L⟨λx.t0⟩{y/p}⟩t1 = s, for some L′ and some pure term

p. Therefore, u →nsub L′⟨L⟨t0[x/t1]⟩{y/p}⟩ = t′ and s →ndB t′ because y /∈ fv(t1).
Note that y may be free in L.

• ((appdb), (apps)) We have t = t0t1 such that t →ndB u0t1 = u and t →nsub s0t1 = s,
where t0 →ndB u0 and t0 →nsub s0. By i.h. there exists t′0 such that s0 →ndB t′0 and
u0 →nsub t

′
0. Therefore, u →nsub t

′
0t1 = t′ and s →ndB t

′.
• ((subdb), (s)) We have t = t0[x ◁ t1] such that t →ndB u0[x ◁ t1] = u, where t0 →ndB u0.
If t = t0[x/L⟨λy.t2⟩] →nsub L⟨t0[x//λy.z[z/t2]]⟩ = s, where t1 = λy.t2, then s →ndB
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L⟨u0[x//λy.z[z/t2]]⟩ = t′ and u →nsub t
′. Otherwise, t →nsub L⟨t0{x/p}⟩ = s for some

L and some pure term p. We show that t0{x/p} →ndB u0{x/p} by induction on
t0 →ndB u0. From this, we can deduce s →ndB L⟨u0{x/p}⟩ = t′ and conclude because
u →nsub t

′.
(a) If t0 = L′⟨λy.q⟩t2 →dB L′⟨q[y/t2]⟩ = u0, then w.l.o.g. we can assume by α-

conversion that y /∈ fv(p)∪{x}, then t0{x/p} = L′{x/p}⟨λy.q{x/p}⟩t2{x/p} →ndB

L′{x/p}⟨q{x/p}[y/t2{x/p}]⟩ = u0{x/p}.
(b) If t0 = t′0t2 →ndB u′0t2 = u0 from t′0 →ndB u′0, then by the i.h. and (appdb) rule

we can conclude t0{x/p} = t′0{x/p}t2{x/p} →ndB u
′
0{x/p}t2{x/p} = u0{x/p}.

(c) If t0 = t′0[y ◁ t2] →ndB u′0[y ◁ t2] = u0 from t′0 →ndB u′0, then w.l.o.g. we can
assume by α-conversion that x ̸= y, then by i.h.and the (subdb) rule we conclude
t0{x/p} = t′0{x/p}[y ◁ t2{x/p}] →ndB u

′
0{x/p}[y ◁ t2{x/p}] = u0{x/p}.

• ((subdb), (subs)) We have t = t0[x//λy.t1] such that t →ndB u0[x//λy.t1] = u and
t →nsub t0[x//λy.s1] = s, where t0 →ndB u0 and t1 →nsub s1. Therefore u →nsub

u0[x//λy.s1] = t′ and s →ndB t
′.

• ((db), (s)), ((db), (subs)), ((appdb), (s)), ((appdb), (subs)) and ((subdb), (apps))
are impossible cases.

Lemma 4.16. Let t ∈ U. Then x ∈ ndv(t) iff there exists a context N such that t = N⟨⟨x⟩⟩.

Proof. (1) x ∈ ndv(t). By induction on t.
• t = x. Then we take N = ♢.
• t = t′u. By the i.h. there exists N′ such that t′ = N′⟨⟨x⟩⟩. We then take N = N′u.
• t = t′[y/u]. By α-conversion we can assume x ̸= y. Either x ∈ ndv(t′) or (x ∈ ndv(u)
and y ∈ ndv(t′)). In the first case, there exists by the i.h. on t′ a context N′ such that
t′ = N′⟨⟨x⟩⟩. We then take N = N′[y/u]. In the second case, there exists by the i.h. on
t′ a context N1 such that t′ = N1⟨⟨y⟩⟩. By the i.h. on u we have u = N2⟨⟨x⟩⟩. We then
take N = N1⟨⟨y⟩⟩[y/N2].

• t = t′[x//u]. By the i.h. there exists N′ such that t′ = N′⟨⟨x⟩⟩. We then take N = N′[x//u].
(2) t = N⟨⟨x⟩⟩. By induction on N.

• N = ♢. Then t = x and ndv(t) = {x}.
• N = N′u. Then t = t′u and by the i.h. x ∈ ndv(t′), so x ∈ ndv(t) by definition.
• N = N′[x◁u]. Then t = t′[x◁u] and by the i.h. x ∈ ndv(t′), so x ∈ ndv(t) by definition.
• N = N1⟨⟨y⟩⟩[y/N2]. Then t = t′[y/u], where y ∈ fv(t′). By the i.h. x ∈ ndv(u), so
x ∈ ndv(t).

Lemma 4.17. Let t ∈ U. Then t ∈ Ne iff t is in flneed-nf.

Proof. We first show that t ∈ Ne iff t is in flneed-nf and t is not an answer.

⇒ : We reason by induction on t ∈ Ne.
• t = x. This case is straightforward.
• t = t′u where t′ ∈ Ne. By the i.h.t′ is in flneed-nf and is not an answer, so it is not

possible to apply any dB-reduction at the root. Then t is in flneed-nf, and since it
is an application it is not an answer.

• t = t′[x ◁ u] where t′ ∈ Ne and x /∈ ndv(t′). By the i.h.t′ is in flneed-nf and it is not
an answer. Moreover, we cannot apply rules →spl nor →ls because by Lemma 4.16
there is no context N surrounding x. Then t is in flneed-nf and is not an answer.
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• t = t′[x/u] where t′, u ∈ Ne and x ∈ ndv(t′). By the i.h.t′ and u are in flneed-nf
and are not answers. We cannot apply rule →spl because u is not an answer. Then
t is in flneed-nf and is not an answer.

⇐ : We reason by induction on t.
• t = x is immediate.
• t = t′u. Then t′ is in flneed-nf and is not an answer (otherwise dB would be

applicable). By the i.h.t′ ∈ Ne and thus t ∈ Ne.
• t = t′[x/u]. Then t′ is in flneed-nf and is not an answer. By the i.h.t′ ∈ Ne. There

are two cases. If x /∈ ndv(t′), then t ∈ Ne by definition and we are done. Otherwise
x ∈ ndv(t′), and we get t′ = N⟨⟨x⟩⟩ by Lemma 4.16. Thus u cannot be an answer
because →spl would apply. Moreveor, u is in flneed-nf because otherwise t would
not be in flneed-nf. Thus, u ∈ Ne by the i.h.and we get t ∈ Ne by definition.

• t = t′[x//u]. We have x /∈ ndv(t′), because →ls does not apply. By the i.h.t′ ∈ Ne,
so that t ∈ Ne.

Neutral terms are also normal. Answers are normal because the calculus is weak and they
belong to the grammar Ne.

Lemma 5.4. For all derivation Φ and all m,n ∈ N with m > n, M (Φ,m) = M (Φ, n) +
(0, (m− n) ∗ sz(Φ), 0).

Proof. By induction on Φ.

• Φ =
x : [σ] ⊢ x : σ

, then, M (Φ,m) = (0, 0, 1) = (0, 0, 1) + (0, 0 + (m− n) ∗ 0, 0).

• If Φ =
Φt ▷ Γ; y : M ⊢ t : τ

Γ ⊢ λy.t : M → τ
, then

M (Φ,m) = M (Φt,m) + (1,m, 0)

=i.h. M (Φt, n) + (0, (m− n) ∗ sz(Φt), 0) + (1, n, 0) + (0,m− n, 0)

= M (Φ, n) + (0, (m− n) ∗ sz(Φt), 0) + (0,m− n, 0)

= M (Φ, n) + (0, (m− n) ∗ (sz(Φt) + 1), 0)

= M (Φ, n) + (0, (m− n) ∗ sz(Φ), 0)

• If Φ =
⊢ λx.t : a

, then, M (Φ,m) = (1,m, 0) = M (Φ, n) + (0, (m− n) ∗ sz(Φ), 0).

• If Φ =
Φt ▷ Γ ⊢ t : M → τ Φu ▷∆ ⊢ u : M

Γ ⊎∆ ⊢ tu : τ
, then

M (Φ,m) = M (Φt,m) +M (Φu,m) + (1,m, 0)

=i.h. M (Φt, n) + (0, (m− n) ∗ sz(Φt), 0)

+M (Φu, n) + (0, (m− n) ∗ sz(Φu), 0) + (1, n, 0) + (0,m− n, 0)

= M (Φ, n) + (0, (m− n) ∗ (sz(Φt) + sz(Φu) + 1), 0)

= M (Φ, n) + (0, (m− n) ∗ sz(Φ), 0)
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• If Φ =
Φt ▷ Γ;x : M ⊢ t : σ Φu ▷∆ ⊢ u : M

Γ ⊎∆ ⊢ t[x ◁ u] : τ
, then

M (Φ,m) = M (Φt,m) +M (Φu,m+ lvx(t) + ES([x ◁ u]))

=i.h. M (Φt, n) + (0, (m− n) ∗ sz(Φt), 0) +M (Φu, n+ lvx(t) + ES([x ◁ u]))

+ (0, (m− n) ∗ sz(Φu), 0)

= M (Φ, n) + (0, (m− n) ∗ (sz(Φt) + sz(Φu)), 0)

= M (Φ, n) + (0, (m− n) ∗ sz(Φ), 0)

Lemma 6.1 (Partial Substitution). Let Φ ▷ Γ;x : M ⊢ C⟨⟨x⟩⟩ : σ and ⊑ denote multiset
inclusion. Then, there exists N ⊑ M such that for every Φu▷∆ ⊢ u : N we have Ψ▷Γ⊎∆;x :
M \ N ⊢ C⟨⟨u⟩⟩ : σ and, for every m ∈ N, M (Ψ,m) = M (Φ,m) + M (Φu,m+ lv♢(C)) −
(0, 0, |N |).

Proof. By induction on Φ.

• If Φ =
x : [σ] ⊢ x : σ

, then N = [σ] and Ψ = Φu▷∆ ⊢ u : [σ]. So, M (Ψ,m) = M (Φu,m) =

(0, 0, 1) +M (Φu,m+ 0)− (0, 0, 1) = M (Φ,m) +M (Φu,m+ lv♢(C))− (0, 0, |N |).

• If Φ =
Φ′ ▷ Γ;x : M; y : My ⊢ C′⟨⟨x⟩⟩ : τ
Γ;x : M ⊢ λy.C′⟨⟨x⟩⟩ : My → τ

, then we can assume by α-conversion that

y /∈ dom(∆) so that (Γ; y : My) ⊎ ∆ = Γ ⊎ ∆; y : My. By using the i.h. we can then

construct Ψ =
Ψ′ ▷ Γ ⊎∆;x : M\N ; y : My ⊢ C′⟨⟨u⟩⟩ : τ
Γ ⊎∆;x : M\N ⊢ λy.C′⟨⟨u⟩⟩ : My → τ

. Then,

M (Ψ,m) = M
(
Ψ′,m

)
+ (1,m, 0)

=i.h. M
(
Φ′,m

)
+M

(
Φu,m+ lv♢(C

′)
)
− (0, 0, |N |) + (1,m, 0)

= M (Φ,m) +M
(
Φu,m+ lv♢(λy.C

′)
)
− (0, 0, |N |)

• If Φ =
∅ ⊢ λy.C′⟨⟨x⟩⟩ : a

, we can build Ψ =
∅ ⊢ λy.C′⟨⟨u⟩⟩ : a

. In particular, we have

M = N = [ ], and thus Φu comes from the application of the (many) rule to 0 premises, so
that M (Φu,m+ lv♢(C)) = (0, 0, 0). We have M (Φ,m) = M (Ψ,m) = M (Ψ,m)+(0, 0, 0)−
(0, 0, 0).

• If Φ =
Φ1 ▷ Γ1;x : M1 ⊢ C′⟨⟨x⟩⟩ : M′ → σ Φ2 ▷ Γ2;x : M2 ⊢ t : M′

Γ1 ⊎ Γ2;x : M ⊢ C′⟨⟨x⟩⟩t : σ
, by i.h. there is

N ⊑ M1 such that we can construct

Ψ =
Ψ1 ▷ Γ1 ⊎∆;x : M1 \ N ⊢ C′⟨⟨u⟩⟩ : M′ → σ Φ2 ▷ Γ2;x : M2 ⊢ t : M′

Γ1 ⊎ Γ2 ⊎∆;x : M\N ⊢ C′⟨⟨u⟩⟩t : σ

because M\N = M1 \ N ⊔M2. We have

M (Ψ,m) = M (Ψ1,m) +M (Φ2,m) + (1,m, 0)

=i.h. M (Φ1,m) +M
(
Φu,m+ lv♢(C

′)
)
− (0, 0, |N |) +M (Φ2,m) + (1,m, 0)

= M (Φ,m) +M
(
Φu,m+ lv♢(C

′t)
)
− (0, 0, |N |)
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• If

Φ =

Φ1 ▷ Γ1;x : M1 ⊢ t : [τi]i∈I → σ

(
Φi
2 ▷ Γi

2;x : Mi
2 ⊢ C′⟨⟨x⟩⟩ : τi

)
i∈I

Γ2;x : M2 ⊢ C′⟨⟨x⟩⟩ : [τi]i∈I
Γ1 ⊎ Γ2;x : M ⊢ tC′⟨⟨x⟩⟩ : σ

where M2 = ⊔i∈IMi
2 and Γ2 = ⊎i∈IΓ

i
2. Lemma 5.5 gives Φi

u ▷∆i ⊢ u : N i such that
N i ⊑ Mi

2 for all i ∈ I and N = ⊔i∈IN i. Moreover, M (Φu,m) =
∑

i∈I M
(
Φi
u,m

)
. By

using the i.h. we can construct

Ψ =

Φ1 ▷ Γ1;x : M1 ⊢ t : [τi]i∈I → σ

(
Ψi

2 ▷ Γi
2 +∆i;x : Mi

2 \ N i ⊢ C′⟨⟨u⟩⟩ : τi
)
i∈I

Γ2 ⊎∆;x : M2 \ N ⊢ C′⟨⟨u⟩⟩ : [τi]i∈I
Γ1 ⊎ Γ2 ⊎∆;x : M\N ⊢ tC′⟨⟨u⟩⟩ : σ

where M\N = M1 ⊔M2 \ N . We have

M (Ψ,m) = M (Φ1,m) +
∑
i∈I

M
(
Ψi

2,m
)
+ (1,m, 0)

=i.h. M (Φ1,m) +
∑
i∈I

(
M
(
Φi
2,m

)
+M

(
Φi
u,m+ lv♢(C

′)
)
− (0, 0, |N i|)

)
+ (1,m, 0)

= M (Φ,m) +M
(
Φu,m+ lv♢(tC

′)
)
− (0, 0, |N |)

• If Φ =
Φ1 ▷ Γ1;x : M1; y : My ⊢ C′⟨⟨x⟩⟩ : σ Φ2 ▷ Γ2;x : M2 ⊢ t : My

Γ1 ⊎ Γ2;x : M ⊢ C′⟨⟨x⟩⟩[y ◁ t] : σ
, then we can

assume by α-conversion that x /∈ fv(u) and y /∈ fv(u) thus, by the Relevance Lemma 5.1,
y /∈ dom(∆) so that in particular (Γ1; y : My)⊎∆ = Γ1 ⊎∆; y : My. By using the i.h. we
can then construct

Ψ =
Ψ1 ▷ Γ1 ⊎∆;x : M1 \ N ; y : My ⊢ C′⟨⟨u⟩⟩ : σ Φ2 ▷ Γ2;x : M2 ⊢ t : My

Γ1 ⊎ Γ2 ⊎∆;x : M\N ⊢ C′⟨⟨u⟩⟩[y ◁ t] : σ

because M\N = M1 \ N ⊔M2. We have:

M (Ψ,m) = M (Ψ1,m) +M
(
Φ2,m+ lvy(C

′⟨⟨u⟩⟩) + ES([y ◁ t])
)

=i.h. M (Φ1,m) +M
(
Φu,m+ lv♢(C

′)
)
− (0, 0, |N |)

+M
(
Φ2,m+ lvy(C

′⟨x⟩)
)
+ ES([y ◁ t])

= M (Φ,m) +M
(
Φu,m+ lv♢(C

′[y ◁ t])
)
− (0, 0, |N |)

• If

Φ =

Φ1 ▷ Γ1;x : M1; y : [τi]i∈I ⊢ t : σ

(
Φi
2 ▷ Γi

2;x : Mi
2 ⊢ C′⟨⟨x⟩⟩ : τi

)
i∈I

Γ2;x : M2 ⊢ C′⟨⟨x⟩⟩ : [τi]i∈I
Γ1 ⊎ Γ2;x : M ⊢ t[y ◁ C′⟨⟨x⟩⟩] : σ

where M = M1 ⊔M2, M2 = ⊔i∈IMi
2 and Γ2 = ⊎i∈IΓ

i
2. Lem. 5.5 gives Φi

u ▷∆i ⊢ u : N i

for all i ∈ I. Moreover, M (Φu,m) =
∑

i∈I M
(
Φi
u,m

)
. By using the i.h. we can construct

Ψ =

Φ1 ▷ Γ1;x : M1; y : [τi]i∈I ⊢ t : σ

(
Ψi

2 ▷ Γi
2 ⊎∆i;x : Mi

2 \ N i ⊢ C′⟨⟨u⟩⟩ : τi
)
i∈I

Γ2 ⊎∆;x : M2 \ N ⊢ C′⟨⟨u⟩⟩ : [τi]i∈I
Γ1 ⊎ Γ2 ⊎∆;x : M\N ⊢ t[y ◁ C′⟨⟨u⟩⟩] : σ
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because M\N = M1 ⊔M2 \ N , where N = ⊔i∈IN i. We have

M (Ψ,m) = M (Φ1,m) +
∑
i∈I

M
(
Ψi

2,m+ lvy(t) + ES([y ◁ C′⟨⟨u⟩⟩])
)

=i.h. M (Φ1,m) +
∑
i∈I

(M
(
Φi
2,m+ lvy(t) + ES([y ◁ C′⟨⟨u⟩⟩])

)
+M

(
Φi
u,m+ lvy(t) + ES([y ◁ C′⟨⟨u⟩⟩]) + lv♢(C

′)
)
− (0, 0, |N i|))

= M (Φ,m) +M
(
Φu,m+ lv♢(t[y ◁ C

′])
)
− (0, 0, |N |)

Notice that a special case is when y /∈ fv(t). Then, I = ∅, Γ = Γ1, N = [ ] and Φu▷∅ ⊢ u : [ ]
is made only of a nullary (many) rule. Hence, Φ = Φ1 = Ψ.

Lemma 6.3 (Weighted Subject Reduction for →π). Let Φt0 ▷ Γ ⊢ t0 : σ and t0 →π t1.
Then there exists Φt1 ▷ Γ ⊢ t1 : σ such that M (Φt0 ,m) = M (Φt1 ,m) for every m ∈ N.

Proof. Let t0 = C⟨t′0⟩ and t1 = C⟨t′1⟩, where t′0 →π t′1 is a root step. We reason by induction
on C. We first consider the base cases where C = ♢.

(1) t′0 = λy.t[x ◁ u] 7→π (λy.t)[x ◁ u] = t′1, where y /∈ fv(u). There are two possible typing
derivations.
(a) The typing derivation is of the form

Φ =

Φt ▷ Γ′; y : N ;x : M ⊢ t : τ Φu ▷∆u ⊢ u : M
Γ′ ⊎∆u; y : N ⊢ t[x ◁ u] : τ

Γ′ ⊎∆u ⊢ λy.t[x ◁ u] : N → τ
(abs)

(cut)

We construct the following derivation.

Ψ =

Φt ▷ Γ′; y : N ;x : M ⊢ t : τ

Γ′;x : M ⊢ λy.t : N → τ
(abs) Φu ▷∆u ⊢ u : M

Γ′ ⊎∆u ⊢ (λy.t)[x ◁ u] : N → τ
(cut)

Moreover,

M (Φ,m) = M (Φt,m) +M (Φu,m+ lvx(t) + ES([x ◁ u])) + (1,m, 0)
= M (Φt,m) + (1,m, 0) +M (Φu,m+ lvx(λy.t) + ES([x ◁ u]))
= M (Ψ,m) .

(b) The typing derivation is of the form

Φ =
⊢ λy.t[x ◁ u] : a

(ans)

We construct the following derivation that has the same measure.

Ψ =
⊢ λy.t : a

(ans)
⊢ u : [ ]

(many)

⊢ (λy.t)[x ◁ u] : a
(cut)

(2) t′0 = t[x ◁ u]s 7→π (ts)[x ◁ u] = t′1, where x /∈ fv(s). The typing derivation is of the form

Φ =

Φt ▷ Γ′;x : M ⊢ t : N → σ Φu ▷∆u ⊢ u : M
Γ′ ⊎∆u ⊢ t[x ◁ u] : N → σ

(cut) Φs ▷∆s ⊢ s : N

Γ′ ⊎∆u ⊎∆s ⊢ t[x ◁ u]s : σ
(app)
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We construct the following derivation.

Ψ =

Φt ▷ Γ′;x : M ⊢ t : N → σ Φs ▷∆s ⊢ s : N
Γ′ ⊎∆s;x : M ⊢ ts : σ

(app) Φu ▷∆u ⊢ u : M

Γ′ ⊎∆u ⊎∆s(ts)[x ◁ u] : σ
(cut)

Moreover, since lvx(t) = lvx(ts),

M (Φ,m) = M (Φt,m)+M (Φs,m)+(1,m, 0)+M (Φu,m+ lvx(ts) + ES([x ◁ u])) = M (Ψ,m) .

(3) t′0 = ts[x ◁ u] 7→π (ts)[x ◁ u] = t′1, where x /∈ fv(t). Let

Φs[x◁u] =


Φi
s ▷∆i

s;x : Mi ⊢ s : ρi

(
Φi,j
u ▷∆i,j

u ⊢ u : δj
)
j∈Ji

∆i
u ⊢ u : Mi

(many)

∆i
u ⊎∆i

s ⊢ s[x ◁ u] : ρi
(cut)


i∈I

∆u ⊎∆s ⊢ s[x ◁ u] : N
(many)

The typing derivation Φ is of the form

Φt ▷ Γ′ ⊢ t : N → σ Φs[x◁u] ▷∆u ⊎∆s ⊢ s[x ◁ u] : N
Γ′ ⊎∆u ⊎∆s ⊢ ts[x ◁ u] : σ

(app)

where Mi = [δj ]j∈Ji , N = [ρi]i∈I , ∆
i
u = ⊎j∈Ji∆

i,j
u , ∆u = ⊎i∈I∆

i
u, and ∆s = ⊎i∈I∆

i
s.

Now, let

Φs =

(
Φi
s ▷∆i

s;x : Mi ⊢ s : ρi
)
i∈I

∆s;x : M ⊢ s : N
(many)

Γ′ ⊎∆s;x : M ⊢ ts : σ
(app) Φu =

(
Φi,j
u ▷∆i,j

u ⊢ u : δj
)
j∈Ji,i∈I

∆u ⊢ u : M
(many)

We construct the following derivation Ψ.

Φt ▷ Γ′ ⊢ t : N → σ Φs ▷ Γ′ ⊎∆s;x : M ⊢ ts : σ Φu ▷∆u ⊢ u : M
Γ′ ⊎∆u ⊎∆s ⊢ (ts)[x ◁ u] : σ

(cut)

where M = ⊔i∈IMi, so that M = [δj ]j∈Ji,i∈I . Moreover, because lvx(s) = lvx(ts),

M (Φ,m) = M (Φt,m) + (1,m, 0)

+
∑
i∈I

M
(
Φi
s,m

)
+
∑
j∈Ji

M
(
Φi,j
u ,m+ lvx(s) + ES([x ◁ u])

)
= M (Ψ,m)

(4) t′0 = t[x ◁ u[y ◁ s]] 7→π t[x ◁ u][y ◁ s] = t′1, where y /∈ fv(t). Let

Φu[y◁s] =


Φi
u ▷∆i

u; y : Ni ⊢ u : ρi

(
Φi,j
s ▷∆i,j

s ⊢ s : δj
)
j∈Ji

∆i
s ⊢ s : Ni

(many)

∆i
u ⊎∆i

s ⊢ u[y ◁ s] : ρi
(cut)


i∈I

∆u ⊎∆s ⊢ u[y ◁ s] : M
(many)
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The typing derivation Φ is of the form

Φt ▷ Γ′;x : M ⊢ t : σ Φu[y◁s] ▷∆u ⊎∆s ⊢ u[y ◁ s] : M
Γ′ ⊎∆u ⊎∆s ⊢ t[x ◁ u[y ◁ s]] : σ

(cut)

where M = [ρi]i∈I , Ni = [δj ]j∈Ji , ∆u = ⊎i∈I∆
i
u, ∆

i
s = ⊎j∈Ji∆

i,j
s , and ∆s = ⊎i∈I∆

i
s.

Now, let

Φt[x◁u] =

Φt ▷ Γ′;x : M ⊢ t : σ

(
Φi
u ▷∆i

u; y : Ni ⊢ u : ρi
)
i∈I

∆u; y : N ⊢ u : M
(many)

Γ′ ⊎∆u; y : N ⊢ t[x ◁ u] : σ
(cut)

We then construct the following derivation Ψ.

Φt[x◁u] ▷ Γ′ ⊎∆u; y : N ⊢ t[x ◁ u] : σ

(
Φi,j
s ▷∆i,j

s ⊢ s : δj
)
j∈Ji,i∈I

∆s ⊢ s : N
(many)

Γ′ ⊎∆u ⊎∆s ⊢ t[x ◁ u][y ◁ s] : σ
(cut)

where N = ⊔i∈INi, so that N = [δj ]j∈Ji,i∈I . Moreover, because y /∈ fv(t), we have
that lvy(t[x ◁ u]) = lvx(t) + lvy(u) + ES([x ◁ u]) if y ∈ fv(u), and lvy(t[x ◁ u]) = 0 oth-

erwise. Now, we show that M
(
Φi,j
s ,m+ lvx(t) + ES([x ◁ u]) + lvy(u) + ES([y ◁ s])

)
=

M
(
Φi,j
s ,m+ lvy(t[x ◁ u]) + ES([y ◁ s])

)
. If y ∈ fv(u), this is immediate. Otherwise, by

the Relevance Lemma 5.1 we have Ji = [ ] for any i thus s is not typed, so that both
measures are equal to (0,0,0). Then,

M (Φ,m) = M (Φt,m) +
∑
i∈I

M
(
Φi
u,m+ lvx(t) + ES([x ◁ u])

)
+
∑
i∈I

∑
j∈Ji

M
(
Φi,j
s ,m+ lvx(t) + ES([x ◁ u]) + lvy(u) + ES([y ◁ s])

)
= M (Φt,m) +

∑
i∈I

M
(
Φi
u,m+ lvx(t) + ES([x ◁ u])

)
+
∑
i∈I

∑
j∈Ji

M
(
Φi,j
s ,m+ lvy(t[x ◁ u]) + ES([y ◁ s])

)
= M (Ψ,m)

Now, we analyse all the inductive cases:

(1) If C = λx.C′, then we have σ = M → τ and Φ′ ▷ Γ;x : M ⊢ C′⟨o⟩ : τ . By the i.h.
there is Ψ′ ▷ Γ;x : M ⊢ C′⟨o′⟩ : τ and therefore Ψ ▷ Γ ⊢ λx.C′⟨o′⟩ : τ . Moreover,
M (Φ,m) = M (Φ′,m) + (1,m, 0) =i.h. M (Ψ′,m) + (1,m, 0) = M (Ψ,m).

(2) If C = C′u, then we have Φ′ ▷ Γ′ ⊢ C′⟨o⟩ : N → σ and Φu ▷ ∆ ⊢ u : N . By the i.h.
there is Ψ′ ▷ Γ′ ⊢ C′⟨o′⟩ : N → σ, so Ψ ▷ Γ′ ⊎∆ ⊢ C′⟨o′⟩u : σ. Moreover, M (Φ,m) =
M (Φ′,m) +M (Φu,m) + (1,m, 0) =i.h. M (Ψ′,m) +M (Φu,m) + (1,m, 0) = M (Ψ,m).

(3) If C = uC′, the case is similar.
(4) If C = C′[x ◁ u], then we have Φ′ ▷ Γ′;x : M ⊢ C′⟨o⟩ : σ and Φu ▷ ∆ ⊢ u : M.

By the i.h. there is Ψ′ ▷ Γ′;x : M ⊢ C′⟨o′⟩ : σ, so Ψ ▷ Γ′ ⊎ ∆ ⊢ C′⟨o′⟩[x ◁ u] : σ.
Moreover, M (Φ,m) = M (Φ′,m) + M (Φu,m+ lvx(t) + ES([x ◁ u])) =i.h. M (Ψ′,m) +
M (Φu,m+ lvx(t) + ES([x ◁ u])) = M (Ψ,m).
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(5) If C = u[x ◁ C′], then we have Φu ▷ ∆;x : M ⊢ u : σ and Φ′ ▷ Γ′ ⊢ C′⟨o⟩ :
M. By the i.h. there is Ψ′ ▷ Γ′ ⊢ C′⟨o′⟩ : M, so Ψ ▷ Γ′ ⊎ ∆ ⊢ u[x ◁ C′⟨o′⟩] : σ.
Moreover, M (Φ,m) = M (Φu,m) + M (Φ′,m+ lvx(u) + ES([x ◁ u])) =i.h. M (Φu,m) +
M (Ψ′,m+ lvx(u) + ES([x ◁ u])) = M (Ψ,m).

Lemma 6.11 (flneed-nfs are Typable). Let t be in flneed-nf. Then there exists a derivation
Φ▷ Γ ⊢ t : τ such that for any x /∈ ndv(t), Γ(x) = [ ].

Proof. First, we show that if t is an answer L⟨λx.p⟩, we can type it with type a and Γ = ∅.
We reason by induction on L. If L = ♢, this is immediate. Otherwise, using the induction
hypothesis, we build:

∅ ⊢ L⟨λx.p⟩ : a ∅ ⊢ u : [ ]
(many)

∅ ⊢ L⟨λx.p⟩[y ◁ u] : a
(cut)

The statement is then trivial since Γ = ∅. For neutral terms, we use induction on Ne with a
stronger hypothesis: there exists a derivation for any given type τ .

• t = x. We can build Φ▷ x : [τ ] ⊢ x : τ . Note that x ∈ ndv(t).
• t = t′u, where t′ ∈ Ne. By the i.h. there is a derivation Φ′ ▷ Γ ⊢ t′ : [ ] → τ verifying the
statement. We then build:

Φ′ ▷ Γ ⊢ t′ : [ ] → τ ∅ ⊢ u : [ ]
(many)

Γ ⊢ t′u : τ
(app)

The statement holds by the i.h. because ndv(t) = ndv(t′).
• t = t′[x ◁ u], where t′ ∈ Ne. By the i.h. there is a derivation Φ′ ▷ Γt′ ⊢ t′ : τ verifying the
statement. Let Γt′ = Γ′;x : [σi]i∈I . There are two cases.
– If x /∈ ndv(t′), then by the i.h. I = [ ]. We can then build the following derivation.

Φ′ ▷ Γ′ ⊢ t′ : τ : ∅ ⊢ u : [ ]
(many)

Γ′ ⊢ t′[x ◁ u] : τ
(cut)

The property holds for Γ = Γ′ because ndv(t) = ndv(t′).
– Otherwise, t = t′[x/u], and u ∈ Ne. We apply the i.h. on u. There are derivations
Φi
u ▷∆i ⊢ u : σi. We take Γ = Γt′ ⊎i∈I ∆i and we build:

Φ′ ▷ Γt′ ⊢ t′ : τ

(Φi
u ▷∆i ⊢ u : σi)

⊎i∈I∆i ⊢ u : [σi]i∈I
(many)

Γ ⊢ t′[x/u] : τ
(cut)

where Γ = Γ′ ⊎i∈I ∆i. Moreover, ndv(t) = (ndv(t′) \ x)∪ ndv(u) so the second property
holds on Γ by the two induction hypothesis.

Lemma 6.14 (Partial Anti-Substitution). Let C⟨⟨x⟩⟩ and u be terms s.t. x /∈ fv(u) and
Φ▷Γ ⊢ C⟨⟨u⟩⟩ : σ. Then ∃Γ′, ∃∆, ∃M, ∃Φ′, ∃Φu s.t. Γ = Γ′⊎∆, Φ′▷Γ′⊎x : M ⊢ C⟨⟨x⟩⟩ : σ
and Φu ▷∆ ⊢ u : M.

Proof. By induction on the structure of C.

• If C = ♢ then the property trivially holds taking Γ′ = ∅, ∆ = Γ, M = [σ], Φ′▷x : [σ] ⊢ x : σ
and Φu = Φ.
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• If C = λy.C′ then y /∈ fv(u) and by α-conversion we can assume that x ̸= y. There are two
cases:

(1) If Φ =
Φ0 ▷ Γ; y : My ⊢ C′⟨⟨u⟩⟩ : τ
Γ ⊢ λy.C′⟨⟨u⟩⟩ : My → τ

then by i.h. there are Γ′,∆,M,Φ′
0 and Φu such

that Γ; y : My = Γ′
0 ⊎∆, Φ′

0 ▷ Γ′
0 ⊎ x : M ⊢ C′⟨⟨x⟩⟩ : τ and Φu ▷∆ ⊢ u : M. By the

Relevance Lemma 5.1 y /∈ dom(∆) thus Γ′
0 = Γ′; y : My. Therefore, Γ′

0 ⊎ x : M =
(Γ′ ⊎ x : M); y : My and

Φ′ =
Φ′
0 ▷ (Γ′ ⊎ x : M); y : My ⊢ C′⟨⟨x⟩⟩ : τ
Γ′ ⊎ x : M ⊢ λy.C′⟨⟨x⟩⟩ : My → τ

(2) If Φ =
∅ ⊢ λy.C′⟨⟨u⟩⟩ : a

then taking Γ′,∆ = ∅, M = [ ] and Φu ▷ ∅ ⊢ u : [ ] we have

Φ′ =
∅ ⊢ λy.C′⟨⟨x⟩⟩ : a

• If C = C′t then Φ =
Φ1 ▷ Γ1 ⊢ C′⟨⟨u⟩⟩ : M′ → σ Φ2 ▷ Γ2 ⊢ t : M′

Γ1 ⊎ Γ2 ⊢ C′⟨⟨u⟩⟩t : σ
, where Γ = Γ1 ⊎ Γ2.

By i.h. there are Γ′
1,∆,M,Φ′

1 and Φu such that Γ1 = Γ′
1 ⊎∆, Φ′

1 ▷ Γ′
1 ⊎ x : M ⊢ C′⟨⟨x⟩⟩ :

M′ → σ and Φu ▷∆ ⊢ u : M. Therefore, taking Γ′ = Γ′
1 ⊎ Γ2 we have

Φ′ =
Φ′
1 ▷ Γ′

1 + x : M ⊢ C′⟨⟨x⟩⟩ : M′ → σ Φ2 ▷ Γ2 ⊢ t : M′

(Γ′
1 ⊎ x : M) ⊎ Γ2 ⊢ C′⟨⟨x⟩⟩t : σ

where (Γ′
1 ⊎ x : M) ⊎ Γ2 = Γ′ ⊎ x : M.

• If C = tC′ then Φ is of the form

Φ1 ▷ Γ1 ⊢ t : [τi]i∈I → σ

(
Φi ▷ Γi ⊢ C′⟨⟨u⟩⟩ : τi

)
i∈I

Γ2 ⊢ C′⟨⟨u⟩⟩ : [τi]i∈I :

Γ1 ⊎ Γ2 ⊢ tC′⟨⟨u⟩⟩ : σ

where Γ2 = ⊎i∈IΓi and Γ = Γ1 ⊎ Γ2. There are two cases:
(1) If I ̸= ∅ then by i.h. ∃Γ′

i, ∃∆i, ∃Mi, ∃Φ′
i, ∃Φi

u s.t. Γi = Γ′
i ⊎∆i, Φ

′
i ▷ Γ′

i ⊎ x : Mi ⊢
C′⟨⟨x⟩⟩ : τi and Φi

u ▷∆i ⊢ u : Mi, for all i ∈ I. Let ∆ = ⊎i∈I∆i and M = ⊔i∈IMi

then from Split Lemma 5.5 we have Φu =

(
Φi
u ▷∆i ⊢ u : Mi

)
i∈I

∆ ⊢ u : M
. Let Γ′

2 = ⊎i∈IΓ
′
i

then Γ′
2 ⊎∆ = Γ2 and Φ′ is defined by

Φ1 ▷ Γ1 ⊢ t : [τi]i∈I → σ

(
Φ′
i ▷ Γ′

i ⊎ x : Mi ⊢ C′⟨⟨x⟩⟩ : τi
)
i∈I

Γ′
2 ⊎ x : M ⊢ C′⟨⟨x⟩⟩ : [τi]i∈I

(Γ1 ⊎ Γ′
2) ⊎ x : M ⊢ tC′⟨⟨x⟩⟩ : σ

where Γ′ = Γ1 ⊎ Γ′
2.

(2) If I = ∅, then [τi]i∈I = [ ], Γ2 = ∅ and Γ = Γ1. Therefore, taking Γ′ = Γ1, ∆ = ∅,
M = [ ], Φu = ∅ ⊢ u : [ ], we have Γ1 = Γ1 ⊎x : [ ] = Γ′ ⊎x : [ ] and Γ′ ⊎∆ = Γ1 ⊎∅ = Γ.
We take

Φ′ =
Φ1 ▷ Γ1 ⊢ t : [ ] → σ ∅ ⊢ C′⟨⟨x⟩⟩ : [ ]

Γ1 ⊢ tC′⟨⟨x⟩⟩ : σ
.
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• If C = C′[y ◁ t] then Φ =
Φ1 ▷ Γ1; y : My ⊢ C′⟨⟨u⟩⟩ : σ Φ2 ▷ Γ2 ⊢ t : My

Γ1 ⊎ Γ2 ⊢ C′⟨⟨u⟩⟩[y ◁ t] : σ
where Γ =

Γ1 ⊎Γ2. Moreover, y /∈ fv(u) and by α-conversion we can assume that x ≠ y. By i.h. there
are Γ′

1,∆,M,Φ′
1 and Φu such that Γ1; y : My = Γ′

1 ⊎∆, Φ′
1 ▷ Γ′

1 ⊎ x : M ⊢ C′⟨⟨x⟩⟩ : σ
and Φu ▷∆ ⊢ u : M. By the Relevance Lemma 5.1 y /∈ dom(∆) thus Γ′

1 = Γ′′; y : My,
Γ′
1 ⊎ x : M = (Γ′′ ⊎ x : M); y : My and Γ′′ ⊎∆ = Γ1. Therefore, taking Γ′ = Γ′′ ⊎ Γ2 we

have

Φ′ =
Φ′
1 ▷ (Γ′′ ⊎ x : M); y : My ⊢ C′⟨⟨x⟩⟩ : σ Φ2 ▷ Γ2 ⊢ t : My

(Γ′′ ⊎ x : M) ⊎ Γ2 ⊢ C′⟨⟨x⟩⟩[y ◁ t] : σ
where (Γ′′ ⊎ x : M) ⊎ Γ2 = Γ′ ⊎ x : M.

• If C = t[y ◁ C′] then Φ is of the form

Φ1 ▷ Γ1; y : [τi]i∈I ⊢ t : σ

(
Φi ▷ Γi ⊢ C′⟨⟨u⟩⟩ : τi

)
i∈I

Γ2 ⊢ C′⟨⟨u⟩⟩ : [τi]i∈I
Γ1 ⊎ Γ2 ⊢ t[y ◁ C′⟨⟨u⟩⟩] : σ

where Γ2 = ⊎i∈IΓi and Γ = Γ1 ⊎ Γ2. There are two cases:
(1) If I ≠ ∅ then by i.h. there are Γ′

i,∆i,Mi,Φ
′
i and Φi

u such that Γi = Γ′
i⊎∆i, Φ

′
i▷Γ′

i⊎x :
Mi ⊢ C′⟨⟨x⟩⟩ : τi and Φi

u▷∆i ⊢ u : Mi, for all i ∈ I. Let ∆ = ⊎i∈I∆i andM = ⊔i∈IMi

then from Split Lemma 5.5 we have Φu =

(
Φi
u ▷∆i ⊢ u : Mi

)
i∈I

∆ ⊢ u : M
. Let Γ′

2 = ⊎i∈IΓ
′
i

then Γ′
2 ⊎∆ = Γ2 and Φ′ is defined by

Φ1 ▷ Γ1; y : [τi]i∈I ⊢ t : σ

(
Φ′
i ▷ Γ′

i ⊎ x : Mi ⊢ C′⟨⟨x⟩⟩ : τi
)
i∈I

Γ′
2 ⊎ x : M ⊢ C′⟨⟨x⟩⟩ : [τi]i∈I

(Γ1 ⊎ Γ′
2) ⊎ x : M ⊢ t[y ◁ C′⟨⟨x⟩⟩] : σ

where Γ′ = Γ1 ⊎ Γ′
2.

(2) If I = ∅ then [τi]i∈I = [ ], Γ2 = ∅ and Γ = Γ1. Moreover, y /∈ dom(Γ1). Therefore,
taking Γ′ = Γ1, ∆ = ∅, M = [ ], Φu = ∅ ⊢ u : [ ], we have Γ1 = Γ1 ⊎ x : [ ] = Γ′ ⊎ x : [ ]
and Γ′ ⊎∆ = Γ1 ⊎ ∅ = Γ. We take

Φ′ =
Φ1 ▷ Γ1 ⊢ t : σ ∅ ⊢ C′⟨⟨x⟩⟩ : [ ]

Γ1 ⊢ t[y ◁ C′⟨⟨x⟩⟩] : σ
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